Преобразование генетического груза в материал прогрессивной эволюции. Генетический груз и его эволюционное значение. «Правила» эволюции групп

Ныне много делается для анализа характера и степени нарушений, вызванных в биосфере; к сожалению, гораздо меньше исследований посвящено изучению того, как эти изменения влияют на биологические особенности человека и других организмов. Особенно это касается генетических последствий загрязнений, хотя они могут оказать определяющее влияние на судьбу человечества в целом. Мутагены среды способны проникать в клетки и поражать их генетическую программу (вызывать мутации). В том случае, когда поражение затрагивает ДНК, которая находится в зародышевых клетках человека, гибнут эмбрионы или рождаются младенцы, имеющие наследственные дефекты. Мутации в клетках тела организма (соматических клетках) вызывают рак, поражения иммунной системы, уменьшают продолжительность жизни.

Генетический груз. Социальные и биологические критерии качества человека не совпадают, но и не так уж далеки друг от друга. Генетический груз. Постоянное давление мутаций и миграции генов, а также выщепление биологически менее приспособленных генотипов по сбалансированным полиморфным локусам. Понятие генетического груза ввел Г. Мёллер в 1950 г. в работе «Наш груз мутаций». Средняя величина генетического груза у человека равна 3-5 летальным эквивалентам. ГЕНЕТИЧЕСКИЙ ГРУЗ -- часть наследственной изменчивости популяций (генетической информации), которая определяет появление менее приспособленных особей, погибающих в процессе естественного отбора. Изучение Г.г. в виде вредных мутаций у человека (наследственные заболевания, врожденные пороки развития) важно для практических вопросов медицинской генетики. С ростом загрязнения окружающей среды частота вредных мутаций увеличивается. Генетический груз во многих семьях наиболее явно проявляется при рождении детей с разного рода генетическими отклонениями в виде физических и психических дефектов. Ныне таких детей рождается 10%, т.е. среди миллиона детей сто тысяч рождается с разными отклонениями от нормального развития.

Генетический груз -- постоянное присутствие в генофонде популяции или вида (в т.ч. человека) вредных мутантных (измененных) генов, возникающих обычно под воздействием различных мутагенных факторов окружающей среды. Генетический груз -- наличие и накопление в популяции негативных генетических изменений, летальных мутаций, ведущее к увеличению частоты наследственных заболеваний и снижению жизнеспособности в ряде поколений.

Генетический груз -- совокупность неблагоприятных генов, унаследованных людьми современных поколений от людей предыдущих поколений, а также возникающих в результате мутаций в каждом новом поколении. Этот «генетический груз» дорого обходится людям как экономически, так и психологически. Считается, что критическая величина частоты генетических нарушений у новорожденных составляет 13%. Это означает, что генетический груз уже настолько велик, что вырождение популяции становится неизбежным. Кстати, это было одним из главных соображений, заставивших противостоявшие друг другу ядерные державы еще в 60-е годы договориться о прекращении испытаний этого оружия в воздухе, на земле и на воде. Тем не менее радиоактивное загрязнение среды снова возрастает. Кроме того, многие химические вещества, загрязняющие воздух, воду и пищу, обладают сильным мутагенным действием. Это ставит под угрозу сохранение генофонда человечества.

Методика генетического мониторинга начинает реально разрабатываться, он ставит перед собой задачу определения объемов и динамики нарушения наследственного здоровья людей, обусловленного влиянием генетического груза. Генетические последствия загрязнения среды обитания человека изучены пока недостаточно. Воздействие генетического груза на экономику, трудовые и оборонные ресурсы очень велико. Только содержание больных синдромом Дауна и фенилкетонурией, которых в московские дома для инвалидов в период с 1964 по 1979 г. поступило 75680 человек, обошлось государству в миллиард рублей (в ценах того времени).

Мутационный груз характеризуется наличием в геноме хромосомных и генных мутаций, в основном доминантных, с явным летальным исходом, з современных популяциях человека он имеет тенденцию к значительному росту. Давление мутаций на каждое поколение людей очень велико. У человека частота мутаций в среднем составляет 5 10.

В его половых клетках имеется около 100 тыс. генов. Каждая оплодотворенная яйцеклетка получает в среднем еще 10 новых мутаций (Н.П. Дубинин, 1990). Было установлено, что в каждом поколении 50% оплодотворенных яйцеклеток или гибнут, или возникшие из них организмы не оставляют потомства. При этом 12% браков бесплодны вследствие дефектов воспроизводительной системы. По мнению Н.П. Дубинина, удвоение объема естественных мутаций недопустимо для человека, особенно если учесть, что генетический груз наиболее явно проявляется при рождении детей с разными генетическими отклонениями в виде физических и психических дефектов (10%).

Все нарушения в генетической информации человека, подрывающие наследственное здоровье населения, объединяются под названием генетического груза (Н.П. Дубинин, 1978,1990). Внедрение эколого-генетического мониторинга позволит выяснить патогенез нарушений в генофонде человека под влиянием все нарастающего прессинга деформированной загрязненной среды. Действие радиации и генетический груз в популяциях человека». Жизнь в атомном и химическом мире». Различают сегрегационный и мутационный груз. Сегрегационный груз -- это часть генетического груза, унаследованная людьми современных поколений от людей, принадлежавших к поколениям, жившим на протяжении многих предыдущих веков. Возможно, этот груз пришел к предыдущим и современным поколениям от предков, живших на разных этапах антропогенеза. Можно сказать, что сегрегационный груз представлен «старыми» мутациями.

Мутационный груз -- это часть генетического груза, которая обусловлена «новыми», т. е. «свежими» мутациями генов и хромосом, возникающими заново в каждом новом поколении. К сожалению, реальная величина вреда, наносимого генетическим грузом, возникающим в каждом поколении, наследственному здоровью населения, не оценена до сего времени достоверно. От атомной индустрии к началу XXI века, по оценкам Р. Бертелл, генетически пострадало не менее 223 млн. человек (Bertell, in litt., 2000). При этом надо учесть, что эти генетические изменения могут передаться из поколения в поколение.

В результате генетический груз в популяциях человека может достигнуть через несколько поколений катастрофических величин. В настоящее время важна комплексная система мероприятий по генетическому мониторингу популяций в сочетании со скринингом химических соединений на мутагенную активность. Выше приведена в наиболее общей форме ее схема. В основу схемы положен принцип мониторинга -- непрерывного слежения. На уровне глобальных и локальных загрязнений биосферы выделяется интегральный мониторинг за ростом врожденных дефектов в популяциях человека. Эта часть задачи может частично решаться с помощью уже известных методов учета числа врожденных заболеваний и аномалий в популяциях, путем биохимического скрининга по изоморфным белкам и цитогенетического скрининга. Известную пользу могут принести данные о динамике злокачественных новообразований и изменений в продолжительности жизни.

Параллельно необходимо оценивать генетический груз в популяциях животных и растений. При изучении зависимости между состоянием среды обитания и генетическим грузом выявляется особая уязвимость нервно-психических функций человека. По общемировым данным, наблюдается ежегодный рост количества неполноценных детей. Так, по минимальным оценкам, нарушения психики отмечаются примерно у 10% населения нашей страны, что составляет около 15 млн. человек. Только в 1990 г. в средней школе обучалось 0,8 млн. детей с ослабленными умственными способностями. Содержание умственно отсталых детей обходится государству в сотни миллионов рублей, т.е. существенно сказывается на его экономике. Один из этих подходов связан с учетом популяционных характеристик. В качестве показателя оценки генетического груза используют медико-статистические показатели (частота спонтанных абортов, частота мертворождений, вес детей при рождении, вероятность выживания, соотношение полов, частота заболеваний врожденных и приобретенных, показатели роста и развития детей).

В соответствии с вышеизложенным Н. П. Дубинин делает очень важный вывод о необходимости организации государственной службы генетического мониторинга, призванной реально определить объем и рост генетического груза в соответствии со степенями экологического напряжения и разработать рекомендации по недопущению факторов, ведущих к его возрастанию. Основная трудность, препятствующая мониторингу за проявлением новых мутаций в популяции человека, состоит в огромном разнообразии генетических особенностей людей и в том, что эти популяции уже накопили большой генетический груз.

О его величине свидетельствуют показатели частоты наследственных заболеваний и врожденных уродств. В ряде стран Европы и США ежегодно рождается от 3 до 7%, а в Японии до 10% детей с генетически контролируемыми врожденными заболеваниями. Эти величины возрастут, если добавить довольно большое число наследственных заболеваний, проявляющихся к концу первого года развития, не выявляющихся при рождении. Всякая живая система, используя обратные связи, всегда стремится к самосохранению. Система обратных связей в биосфере направлена на элиминацию1 человека как вида. Увеличивается генетический «груз» человечества, отмечается рост психических и нервных заболеваний, снижается общая сопротивляемость болезням, усиливается стресс перенаселения в городах, агрессия, страх и т. д. Человек для оправдания названия своего вида «Человек разумный» должен планировать дальнейшую деятельность так, чтобы сохранить оставшуюся и по возможности восстановить утраченную биоту планеты за счет естественной саморегуляции природной среды.

Если уродства возникают в течение эмбриогенеза, то в природе такие маленькие человеческие существа были бы нежизнеспособны. Однако современная медицина позволяет им выжить. Такие люди, несущие уродства или мутантные гены, иногда могут давать потомство, тем самым отягощая генетический груз человечества. Н. П. Дубинин пишет: «По данным московских домов для инвалидов, по умственной отсталости за период с 1964 по 1979 г. в эти дома поступило 75680 больных фенилкетонурией и с синдромом Дауна. Их содержание за это время обошлось государству в миллиард рублей. Такова цена двух болезней. На самом деле число людей в нашей стране, подверженных влиянию генетического груза, исчисляется десятками миллионов. Человечество становится все более больным и дегенеративным. Одна из главных причин антропоэкологического напряжения и утомления -- несоответствие между адаптационными возможностями организма человека, формировавшегося в процессе эволюции на протяжении многих тысячелетий, и современными условиями среды его обитания, способной резко изменяться в течение нескольких десятков лет.

Именно эта диспропорция может служить причиной генетического напряжения и утомления, что является выражением генетического груза. Если «средние» оценки влияния загрязнения среды на заболеваемость имеют какое-то значение, то независимо от частных значений этой связи в разных случаях, специалисты единодушны в том, что степень этого влияния во многих странах в последние десятилетия быстро нарастает. В главе 1 уже говорилось, что избавление человека от естественного отбора привело к увеличению неблагоприятного генетического груза и ослаблению естественных защитных сил организма. На этом фоне ухудшение качества среды оказывает все возрастающее действие на здоровье людей. Многие такие состояния субъективно не воспринимаются как обусловленные загрязнением среды.

Однако искусственный отбор и селекция в некоторых случаях имели негативные последствия. В аграрных ландшафтах успешнее размножались животные, приспособленные для жизни в условиях, созданных человеком (пастбища, хлевы и т. д.). С увеличением зависимости от искусственных условий местообитания и питания сохранились такие генотипы, которые вряд ли выжили бы в дикой природе. При заботе со стороны человека генетически неполноценные животные обычно не вымирают. При этом «неполноценные», «вредные», «отрицательные» гены не исчезают, а продолжают накапливаться и размножаться в популяциях. Это привело к возникновению и накоплению наследственного бремени («генетического груза») в животноводстве. Детеныши, больные из-за мутантных генов (хромосомных изменений), а также в результате нарушений развития в течение эмбриогенеза, нежизнеспособны в условиях дикой природы и, скорее всего, были бы ею «отбракованы». Однако развитие медицины и общее повышение уровня жизни человека, особенно в XIX и XX вв., вывело человеческую популяцию из-под влияния естественного отбора, и поэтому у человечества накопился достаточно значительный генетический груз. В наше время известно более двух тысяч наследственных болезней человека, вызванных различными мутациями.

Эволюционные изменения связаны не только с образованием и вымиранием видов, преобразованием органов, но и с перестройкой онтогенетического развития.

Онтогенез - это индивидуальное развитие, оно представляет собой неотъемлемое свойство жизни, как эволюция, и её продукт. Организм в онтогенезе ни на одной из стадий развития не является мозаикой частей, органов или признаков. Морфологическая и функциональная целостность организма в его жизненных проявлениях не вызывает никаких сомнений. Еще Аристотель при сравнении различных организмов установил единство их строения и обосновал учение о морфологическом сходстве. Большое значение в истории вопроса о взаимозависимостях частей организма имели взгляды Ж. Кювье. По его представлениям, организм является целостной системой, строение которой определяется ее функцией; отдельные части и органы находятся во взаимной связи, их функции согласованы и приспособлены к известным условиям внешней среды. Ч. Дарвин отмечал, что координация частей есть результат исторического процесса приспособления организма к условиям жизни. В дальнейшем многие ученые подчеркивали тот факт, что организм всегда развивается как целое. Онтогенез можно определить как усложнение организации данного поколения. Процесс онтогенеза представляет собой реализацию генетической информации.

Онтогенез - есть предопределенный процесс, и, в отличие от эволюции, является развитием по программе, развитием, направленным к определенной конечной цели, которой является достижение половозрелости и размножения. Чем сложнее организация взрослого организма, а это является отражением эволюции, тем сложнее и длительнее процесс его онтогенеза.

Онтогенез состоит из этапов (одна особенность онтогенеза): эмбриональный этап, постэмбриональное развитие и жизнь взрослого организма. Крупные этапы (периоды) развития можно подразделить на более дробные стадии, как в эмбриональном развитии позвоночных - бластулы, гаструлы, нейрулы. Стадию дробления, в свою очередь, можно разделить на стадии двух, четырех, восьми и более бластомеров. В результате представление об этапности онтогенеза теряется и вырисовывается вполне плавный процесс индивидуального развития. Изменение группы в филогенезе могут возникнуть лишь посредством изменения в онтогенезе, обычно эти изменения индивидуального развития касаются поздних стадий развития, что отмечалось выше. Впервые взаимосвязь онтогенеза и филогенеза раскрыл в ряде положений К. Бэр, которым Ч. Дарвин дал обобщенное название «Закон зародышевого сходства». В 1864 г. Ф. Мюллер сформулировал положение о том, что филогенетические преобразования связаны с онтогенетическими изменениями и что эта связь проявляется двумя путями.

Работы Ф. Мюллера послужили основой для формулировки Э. Геккелем (1866 г.) биогенетического закона , согласно которому «онтогенез есть краткое и быстрое повторение филогенеза». Основа биогенетического закона, как и рекапитуляции, заключается в эмпирической закономерности, отраженной в законе зародышевого сходства К. Бэра. Суть его заключается в следующем: самая ранняя стадия сохраняет значительное сходство с соответствующими стадиями развития родственных форм.

Результаты эволюции онтогенеза :

  • 1) рационализация;
  • 2) автономизация;
  • 3) эмбрионизация.

Рационализация заключается в усовершенствовании процесса с помощью его упрощения. Впервые взаимосвязь онто и филогенеза раскрыл К. Бэр в ряде положений которые Дарвин назвал «законом зародышевого сходства» суть егов следующем: самая ранняя стадия сохраняет значительное сходство в соответствии со стадиями развития родственных форм. Т.е процесс онтогенеза представляет собой известное повторение многих черт строения предковых форм: на ранних стадиях развития - более отдаленных предков, а на более поздних - более родственных форм.

Северцова теория филэмбриогенеза -- теория, согласно которой эволюция совершается путем изменения хода онтогенеза, т. е. наследственные изменения строения органов животных, нарушающие течение исторического хода развития и изменяющие строение взрослых особей, проявляются в эмбриональном развитии. По данным автора, филогенез -- это совокупность онтогенезов генетического ряда поколений и всех тех наследственных преобразований, которые происходят на различных этапах индивидуального развития животных в ряде поколений.

Анаболия, или надставка стадий, -- эволюционные изменения формообразования на конечных стадиях зародышевого развития. В связи с тем что анаболии изменяют поздние стадии развития органа, они не вызывают существенных перестроек других частей организма, поэтому встречаются чаще. Путем анаболии в основном формируются видовые и родовые признаки.

Девиация -- эволюционные перестройки на средних стадиях зародышевого развития органа. Например, имеется сходство в закладке и начальном развитии чешуи у акуловых и рептилий. На средних стадиях зародышевого развития рептилий происходят отклонения, которые ведут к образованию ороговевшей чешуи, в та время как у акуловых формируется окостеневшая чешуя с зубцом. Очевидно, клубни и луковицы у растений возникли путем девиации. При этом рекапитуляция (повторение предковых признаков) наблюдается только до средних стадий эмбриогенеза, а затем развитие идет по новому пути.

Архаллаксис -- изменения начальных стадий эмбриогенеза или изменения самих зачатков органа. Этим путем идет развитие волоса млекопитающих -- производного кожи -- без повторения предковых признаков. Архаллаксисы вызывают с самого начала коренную перестройку в развитии органа. Они могут быть причиной нарушения функции органа и его связей с другими частями организма, что может привести к смерти. Очевидно, поэтому в филогенезе они встречаются реже, чем другие филэмбриогенезы. При архаллаксисе не наблюдается палингенезов и рекапитуляции и поэтому положения биогенетического закона здесь неприемлемы.

Следует отметить, что разные типы филэмбриогенезов не обособлены, они связаны и имеют взаимопереходы. Филэмбриогенезы характерны л для растений. Они возникают на разных стадиях развития и могут быть положительными (возникновение новых признаков) и отрицательными (выпадение, утрата старого признака).

Если биогенетический закон фиксирует внимание на зависимости онтогенеза от филогенеза (Ф>О), то теория филэмбриогенезов показывает, что и изменения в онтогенезе влияют на филогенез (Ф-О) -- онтогенетическая обусловленность филогенеза.

Генетическое разнообразие или генетический полиморфизм - разнообразие популяций по признакам или маркерам генетической природы. Один из видов биоразнообразия. Генетическое разнообразие представляет собой важный компонент генетической характеристики популяции, группы популяций или вида. Генетическое разнообразие, в зависимости от выбора рассматриваемых генетических маркеров, характеризуется несколькими измеряемыми параметрами:

1. Средняя гетерозиготность.

2. Число аллелей на локус.

3. Генетическое расстояние (для оценки межпопуляционного генетического разнообразия).

Полиморфизм бывает:

Хромосомный;

Переходный;

Сбалансированный.

Генетический полиморфизм наблюдается, когда ген представлен более чем одним аллелем. Пример – системы групп крови.

Хромосомный полиморфизм – между особями имеются различия по отдельным хромосомам. Это результат хромосомных аббераций. Есть различия в гетерохроматиновых участках. Если изменения не имеют патологических последствий – хромосомный полиморфизм, характер мутаций – нейтрален.

Переходный полиморфизм – замещение в популяции одного старого аллеля новым, который более полезен в данных условиях. У человека есть ген гаптоглобина - Нр1f, Hp 2fs. Старый аллель - Нр1f, новый - Нр2fs. Нр образует комплекс с гемоглобином и обусловливает слипание эритроцитов в острую фазу заболеваний.

Сбалансированный полиморфизм – возникает, когда ни один из генотипов преимущества не получает, а естественный отбор благоприятствует разнообразию.

Все формы полиморфизма очень широко распространены в природе в популяциях всех организмов. В популяциях организмов, размножающихся половым путем, всегда есть полиморфизм.

Беспозвоночные животные полиморфнее, чем позвоночные. Чем полиморфнее популяция, тем более она эволюционно пластична. В популяции большие запасы аллелей не обладают максимальной приспособленностью в данном месте в данное время. Эти запасы встречаются в небольшом количестве и гетерозиготном состоянии. После изменений условий существования они могут стать полезными и начать накапливаться – переходный полиморфизм. Большие генетические запасы помогают популяции реагировать на окружающую среду. Одним из механизмов, поддерживающих разнообразие – превосходство гетерозигот. При полном доминировании – нет проявления, при неполном доминировании наблюдается гетерозис. В популяции отбор поддерживает генетически неустойчивую гетерозиготную структуру, и такая популяция содержит 3 типа особей (АА, Аа, аа). В результате действия естественного отбора происходит генетическая гибель, снижающая репродуктивный потенциал популяции. Численность популяции падает. Поэтому генетическая гибель – бремя для популяции. Ее также называют генетическим грузом.


Генетический груз – часть наследственной изменчивости популяции, определяющая появление менее приспособленных особей, подвергающихся избирательной гибели в результате естественного отбора.

Существует 3 типа генетического груза.

1. Мутационный.

2. Сегрегационный.

3. Субституционный.

Каждый тип генетического груза коррелирует с определенным типом естественного отбора.

Мутационный генетический груз - побочное действие мутационного процесса. Стабилизирующий естественный отбор удаляет вредные мутации из популяции.

Сегрегационный генетический груз – характерен для популяций, использующих преимущество гетерозигот. Удаляются хуже приспособленные гомозиготные особи. Если обе гомозиготы летальны – половина потомков погибает.

Субституционный генетический груз – происходит замена старого аллеля новым. Соответствует движущей форме естественного отбора и переходному полиморфизму.

генетический полиморфизм создает все условия для протекающей эволюции. При появлении нового фактора в среде популяция способна адаптироваться к новым условиям. Например, устойчивость насекомых к различным видам инсектицидов.

Наименование параметра Значение
Тема статьи: ГЕНЕТИЧЕСКИЙ ГРУЗ
Рубрика (тематическая категория) Экология

НАСЛЕДСТВЕННЫЙ ПОЛИМОРФИЗМ ПРИРОДНЫХ ПОПУЛЯЦИЙ.

Процесс видообразования с участием такого фактора, как естественный отбор, создает разнообразие живых форм, приспособленных к условиям обитания. Среди разных генотипов, возникающих в каждом поколении благодаря резерву наследственной изменчивости и перекомбинации аллелœей, лишь ограниченное число обусловливает максимальную приспособленность к конкретной среде. Можно предположить, что дифференциальное воспроизведение этих генотипов в конце приведет к тому, что генофонды популяций будут представлены лишь ʼʼудачнымиʼʼ аллелями и их комбинациями. В итоге произойдет затухание наследственной изменчивости и повышение уровня гомозиготности генотипов.

В природных популяциях, однако, наблюдается противоположное состояние. Большинство организмов являются высокогетерозиготными. Отдельные особи гетерозиготны частично по разным локусам, что повышает суммарную гетерозиготность популяции. Так, методом электрофореза на 126 особях рачка Euphausia superba, представляющего главную пищу китов в антарктических водах, изучали 36 локусов, кодирующих первичную структуру ряда ферментов. По 15 локусам изменчивость отсутствовала. По 21 локусу имелось по 3-4 аллеля. В целом в этой популяции рачков 58% локусов были гетерозиготными и имели по 2 аллеля и более. В среднем у каждой особи по 5,8% гетерозиготных локусов. Средний уровень гетерозиготности у растений составляет 17%, беспозвоночных - 13,4, позвоночных - 6,6%. У человека данный показатель равен 6,7%. Столь высокий уровень гетерозиготности нельзя объяснить только мутациями в силу относительной их редкости.

Наличие в популяции нескольких равновесно сосуществующих генотипов в концентрации, превышающей по наиболее редкой форме 1%1, называют полиморфизмом. Наследственный полиморфизм создается мутациями и комбинативной изменчивостью. Он поддерживается естественным отбором и бывает адаптационным (переходным) и гетерозиготным (балансированным).

Адаптационный полиморфизм возникает, в случае если в различных, но закономерно изменяющихся условиях жизни отбор благоприятствует разным генотипам. Так, в популяциях двухточечных божьих коровок Adalia bipunctata при уходе на зимовку преобладают черные жуки, а весной-красные (рис. 11.7). Это происходит потому, что красные формы лучше переносят холод, а черные интенсивнее размножаются в летний период.

Рис. 11.7. Адаптационный полиморфизм у двухточечных божьих коровок:

а- соотношение черной (зачернено) и красной форм при весеннем (В) и осœеннем (О) сборе; б- частота доминантного аллеля черной окраски в весенней и осœенней популяциях

Балансированный полиморфизм возникает, в случае если отбор благоприятствует гетерозиготам в сравнении с рецессивными и доминантными гомозиготами. Так, в опытной численно равновесной популяции плодовых мух Drosophila melanogaster, содержащей поначалу много мутантов с более темными телами (рецессивная мутация ebony), концентрация последних быстро падала, пока не стабилизировалась на уровне 10% (рис. 11.8). Анализ показал, что в созданных условиях гомозиготы по мутации ebony и гомозиготы по аллелю дикого типа менее жизнеспособны, чем гетерозиготные мухи. Это и создает состояние устойчивого полиморфизма по соответствующему локусу.

Рис. 11.8. Балансированный полиморфизм по локусу окраски тела в опытной популяции плодовых мух: I -серая муха (дикий тип), II- мутантная муха с черной окраской тела

Явление селœективного преимущества гетерозигот называют сверхдоминантностью. Механизм положительного отбора гетерозигот различен. Правилом является зависимость интенсивности отбора от частоты, с которой встречается соответствующий фенотип (генотип). Так, рыбы, птицы, млекопитающие предпочитают обычные фенотипические формы добычи, ʼʼне замечаяʼʼ редких.

В качестве примера рассмотрим результаты наблюдений, выполненных на обыкновенной наземной улитке Cepaea nemoralis, раковина у которой бывает желтая, различных оттенков коричневого цвета͵ розовая, оранжевая или красная. На раковинœе должна быть до пяти темных полос. При этом коричневая окраска доминирует над розовой, а они обе - над желтой. Полосатость является рецессивным признаком. Улитки поедаются дроздами, использующими камень как наковальню, чтобы разбить раковину и добраться до тела моллюска. Подсчет числа раковин разной окраски вокруг таких ʼʼнаковаленʼʼ показал, что на траве или лесной подстилке, фон которых достаточно однороден, добычей птиц чаще оказывались улитки с розовой и полосатой раковиной. На пастбищах с грубыми травами или в живых изгородях с более пестрым фоном чаще поедались улитки, раковины которых окрашены в светлые тона и не имели полос.

Самцы относительно редких генотипов могут иметь повышенную конкурентоспособность за самок. Селœективное преимущество гетерозигот обусловливается также явлением гетерозиса. Повышенная жизнеспособность межлинœейных гибридов отражает, по-видимому, результат взаимодействия аллельных и неаллельных генов в системе генотипов в условиях гетерозиготности по многим локусам. Гетерозис наблюдается в отсутствие фенотипического проявления рецессивных аллелœей. Это сохраняет скрытыми от естественного отбора неблагоприятные и даже летальные рецессивные мутации.

В силу разнообразия факторов среды обитания естественный отбор действует одновременно по многим направлениям. При этом конечный результат зависит от соотношения интенсивности разных векторов отбора. Конечный результат естественного отбора в популяции зависит от наложения многих векторов отборов и контротборов. Благодаря этому достигается одновременно и стабилизация генофонда, и поддержание наследственного разноообразия.

Балансированный полиморфизм придает популяции ряд ценных свойств, что определяет его биологическое значение. Генетически разнородная популяция осваивает более широкий спектр условий жизни, используя среду обитания более полно. В ее генофонде накапливается больший объём резервной наследственной изменчивости. В результате она приобретает эволюционную гибкость и может, изменяясь в том или ином направлении, компенсировать колебания среды в ходе исторического развития.

В генетически полиморфной популяции из поколения в поколение рождаются организмы генотипов, приспособленность которых неодинакова. В каждый момент времени жизнеспособность такой популяции ниже уровня, который был бы достигнут при наличии в ней лишь наиболее ʼʼудачныхʼʼ генотипов. Величину, на которую приспособленность реальной популяции отличается от приспособленности идеальной популяции из ʼʼлучшихʼʼ генотипов, возможных при данном генофонде, называют генетическим грузом. Он является своеобразной платой за экологическую и эволюционную гибкость. Генетический груз - неизбежное следствие генетического полиморфизма.

ГЕНЕТИЧЕСКИЙ ГРУЗ - понятие и виды. Классификация и особенности категории "ГЕНЕТИЧЕСКИЙ ГРУЗ" 2017, 2018.

  • Анкета для оценки инновационного потенциала предприятия.
  • Биологическая изменчивость людей и биогеографическая характеристика среды. Экологическая дифференцировка человечества. Понятие экологических типах людей и их формирования.
  • Генетический полиморфизм - сосуществование в пределах популяции двух или нескольких различных наследственных форм, находящихся в динамическом равновесии в течение нескольких и даже многих поколений. Чаще всего Г. п. обусловливается либо варьирующими давлениями и векторами (направленностью) отбора в различных условиях (например, в разные сезоны), либо повышенной относительной жизнеспособностью гетерозигот). Один из видов Г. п. - сбалансированный Г. п. - характеризуется постоянным оптимальным соотношением полиморфных форм, отклонение от которого оказывается неблагоприятным для вида, и автоматически регулируется (устанавливается оптимальное соотношение форм). В состоянии сбалансированного Г. п. у человека и животных находится большинство генов. Различают несколько форм Г. п., анализ которых позволяет определять действие отбора в природных популяциях.

    Полиморфным признаком называют менделевский (моногенный) признак, по которому в популяции присутствуют как минимум два фенотипа (и, следовательно, как минимум два аллеля), причём ни один из них не встречается с частотой менее 1% (т.е. не является редким). Эти два фенотипа (и, соответственно, генотипа) находятся в состоянии длительного равновесия. Наследственный полиморфизм создаётся мутациями и комбинативной изменчивостью. Часто в популяциях присутствует больше двух аллелей по данному локусу и, соответственно, более чем два фенотипа. Альтернативное полиморфизму явление - существование редких генетических вариантов, присутствующих в популяции с частотой менее 1%. Первый полиморфный признак (система групп крови АВО) был открыт в 1900 г. австрийским учёным К. Ландштейнером (1868-1943).

    Адаптивный потенциал - предел устойчивости культурных растений и сельскохозяйственных животных к неблагоприятным факторам. У культурных растений - к насекомым-вредителям, засоренности посева, болезням, засухе, засолению почвы, холоду. У сельскохозяйственных животных - к холоду, временному дефициту корма, болезням. Повышение А.п. - основное направление адаптивной селекции.

    ГЕНЕТИЧЕСКИЙ ГРУЗ - часть наследственной изменчивости популяции, к-рая определяет появление менее приспособленных особей, подвергающихся избирательной гибели в процессе естеств. отбора. Источниками Г. г. служат мутац. и сегрегац. процессы.

    Соответственно различают мутационный, сегрегационный , а также субституционный (замещающий, или переходный) Г. г. Согласно классич. концепции Г. Мёллера, мутационный груз обусловлен повторным возникновением в популяции мутантных аллелей. Поскольку естеств. отбор направлен против этих аллелей, их частота невелика и они поддерживаются в популяции благодаря мутационному давлению. Рецессивные мутации в гетерозиготном состоянии полностью подавляются или же оказывают слабое повреждающее действие. Согласно балансовой концепции Ф. Г. Добржанского, сегрегационный груз возникает в результате выщепления гетерозиготными родителями менее приспособленных гомозиготных потомков. При этом допускается, что значит, часть мутаций оказывает в гетерозиготном состоянии положит, действие (эффект сверхдоминирования) и постоянно поддерживается отбором в ряду поколений. Субституционный груз возникает при изменении адаптивной ценности особей и сохраняется в популяции, пока один аллель не заместит другой. Каждая популяция несёт в себе Г. г., часть к-рого происходит за счёт повторного мутирования, а др. часть - за счёт эффекта сверхдоминирования (вопрос о соотносит, роли разных типов Г. г. в популяции не решён). В обоих случаях гомозиготы имеют отрицат. проявление. Однако понятие вредности мутаций относительно, т. к. Г. г. одновременно может представлять собой генотипич. резерв эволюции благодаря поддержанию гене-тич. разнообразия и, следовательно, эво-люц. пластичности популяций. Этот резерв может служить для создания гене-тич. систем, к-рые приведут к появлению новых приспособит, особенностей популяций. Классич. пример такого рода эволюционного изменения - распространение мутации меланизма у бабочки берёзовой пяденицы. Изучение Г. г. в виде вредных мутаций у человека (наследств, заболевания) важно для решения прак-тич. вопросов мед. генетики.

    Паразитология (от греческого parasitos – нахлебник и logos – слово, учение) – наука, изучающая паразитов, их взаимодействие с хозяевами, переносчиками и окружающей средой, а также вызываемые ими болезни и меры борьбы с ними. Паразитизм - форма межвидовых взаимоотношений, при которых один вид использует среды организма другого вида как источник питания и место обитания. «Паразиты – это такие организмы, которые используют другие живые организмы в качестве среды обитания и источника пищи, возлагая при этом (частично или полностью) на своих хозяев задачу регуляции своих взаимоотношений с окружающей внешней средой». В.А. Догель. Медицинская гельминтология – наука, изучающая гельминтов – возбудителей болезней человека и вызываемые ими заболевания, а также меры профилактики и борьбы с ними. Заболевания, вызываемые гельминтами, называют гельминтозами. Гельминтозы наиболее распространенные и массовые паразитарные болезни человека, возникающие в результате сложных взаимоотношений между наиболее высокоорганизованными многоклеточными паразитами – гельминтами и организмом хозяина. Большинство гельминтозов характеризуется длительным течением и широким диапазоном клинических проявлений – от бессимптомных до тяжелых форм. Термин «гельминтозы» (от греческого helmins – червь, гельминт) введен Гиппократом, который подробно описал клинику некоторых из этих болезней (аскаридоза, энтеробиоза, тениозов, эхинококкоза, шистосомоза). Иногда эти болезни называют глистными инвазиями. По мнению ведущих специалистов, в действительности гельминтами в России ежегодно инвазируется около 15 млн. человек. Этиология и эпидемиология гельминтозовВозбудители гельминтозов низшие черви – гельминты относятся к надтипу Scolecida, который объединяет многоклеточных беспозвоночных животных, имеющих двусторонне-симметричное, вытянутое в длину тело, покрытое кутикулой. Стенки тела сколецид образованы кожно-мускульным мешком; их ткани формируются из трех зародышевых листков. Кожно-мускульный мешок состоит из гладких или поперечно-полосатых мышц и покровных тканей. 1. По специфичности питания:а) облигатные (специфичные) – паразиты обязательные для данного вида организмов;б) факультатиные (неспецифичные) – паразиты, которые способны вести свободный способ жизни, но попадая в организм хозяина проходят в нём часть цикла развития и нарушают его жизнедеятельность.2. По времени контакта:а) постоянные – паразиты, которые всю жизнь или значительную его часть проводят на или в организме хозяина;б) временные – паразиты, которые попадают на хозяина только для питания.3. По месту локализации:а) ектопаразиты – паразиты, живущие на покровах хозяина;б) ендопаразиты – паразиты, живущие внутри хозяина;в) моноксенные – паразиты, не способные вступать в симбиоз с другими паразитами;г) гетероксеные – паразиты живущие в симбиозе с другими паразитами.4. По экологической принадлежности:а) биопротисты- паразиты подцарства простейших, развивахщиеся с промежуточным хозяином или на всех стадиях жизненного цикла не выходят из организма хозяина и не образуют цисты;б) геопротисты- паразитов подцарства простейших, развивахщиеся без участия промежуточных хозяев, образуют цисты и одну из стадий развития проходят вне живого организма, во внешней среде.Патогенность – способность возбудителя вызывать специфический инфекционный процесс(заболевание) у животных определённого вида или у человека.Возбудитель инфекции (инвазии)- живое существо (бактерия, гриб, многоклеточный организм, животное) или вирус, которое способно попасть в организм и вызвать в нём патологический процесс.Хозяин возбудителя - вид (виды) животных, обеспечивающий циркуляцию возбудителя в природному очаге. Могут быть:а) окончательными – вид (виды) животных, который из-за особенностей способа жизни и взаимоотношений с возбудителем обеспечивает постоянство циркуляции возбудителя в конкретном очаге;б) промежуточным (дополнительным) – вид (виды) животных, который часто привлекается в эпизоотический процесс и способствует в той или иной степени распространению и интенсификации эпизоотий, через особенности экологии и взаимоотношений с возбудителем, неспособны самостоятельно обесбепечить его постоянную циркуляцию в природном очаге;в) резервуарными – вид (виды) животных, в которых паразиты накапливаются, сохраняются в межепизоотические периоды;г) облигатные – вид (виды) животных, который является обязательным в цикле развития данного паразита;д) факультативне – вид (виды) животных, которые не являються обязательными в цикле развития паразита и без которых они могут развиваться.Переносчик - кровососущие членистоногие, способные в природных условиях передавать возбудителя от донора к реципиенту. Различают:а) основного(специфического) – вид (виды) членистоногих, который в силу особенностей жизненного цикла, численности и способности передавать возбудителя обеспечивает постоянную циркуляцию его в природном очаге. В некоторых случаях одновременно может быть хозяином возбудителя;б) механического (неспецифического) – вид (виды) членистоногих, в котором паразит не проходит ни единого этапа цикла развития и не является обязательным для существования его.Механизм передачи - эволюционно сложный способ, при помощи которого возбудитель передаётся от зараженного организма к восприимчивому (склонного к полному заболеванию). Состоит из 3-х последовательно и закономерно следующих одна за другой фаз:а) выход (выведение) возбудителя из зараженного организма во внешнюю среду;б) пребывание возбудителя во внешней среде;в) проникновение возбудителя в здоровый организм, приводящее к заболеванию.Путь передачи – форма реализации механизма передачи от источника инфекции к восприимчивому организму при участии объектов окружающей среды.Различают 3 пути передачи возбудителя:а) контактно-бытовой – передача может осуществлятся при непосредственном общении (прямой контакт – влагалищная трихомонада) или через зараженные предметы окружающей среды (непрямой контакт – чесоточный зудень);б) механический:)a алиментарный(фекально-оральный) - характерный для передачи кишечных инфекций. Факторы передачи возбудителя – пищевые продукты, вода, грязные руки, мухи, разные предметы обихода;)b аэрогенный (воздушно-капельный) – передача может осуществляться при разговоре, крике, плаче и особенно чхании и кашле с капельками слизи или вдыхании пыли (ротовая амёба, ротовая трихомонада, токсоплазма); собственно механический (перкутантный) – передача может осуществляться через кожу хозяина (анкилостома);gв) трансмиссивный – передача осуществляется живыми переносчиками, которые часто являются основными хозяевами (плазмодии, лейшмании и др.).Факторы передачи инфекции – конкретные объекты, элементы окрущающей среды, при помощи которых возбудитель передаётся от зараженного организма к здоровому.

    В 1960г Хабби и Левонтин предложили использовать метод электрофореза для определения морфологии белков человека и животных - благодаря заряду происходит распределение белков по слоям (метод очень точен).

    Примером могут служить изоферменты (у организмов одного и того же вида есть несколько форм ферментов, катализирующих одну химическую реакцию, но различающихся по строению, активности и физико-химическим свойствам).

    16% локусов структурных генов – полиморфны. Существует 30 форм глюкозы-6-фосфатазы. Часто есть сцепление с полом. В клинике давно различают лактатдегидрогеназы (ЛДГ), которых существует 5 форм. Этот фермент осуществляет превращение глюкозы в пируват, концентрация того или иного изофермента в разных органах различает, на чем основана лабораторная диагностика заболеваний.

    Беспозвоночные животные полиморфнее, чем позвоночные. Чем полиморфнее популяция, тем более она эволюционно пластична. В популяции большие запасы аллелей не обладают максимальной приспособленностью в данном месте в данное время. Эти запасы встречаются в небольшом количестве и гетерозиготном состоянии. После изменений условий существования они могут стать полезными и начать накапливаться – переходный полиморфизм . Большие генетические запасы помогают популяции реагировать на окружающую среду.

    В следствие того, что в популяции отбор поддерживает генетически неустойчивую гетерозиготную структуру, популяция содержит 3 типа особей (АА, Аа, аа). В результате действия естественного отбора происходит генетическая гибель, снижающая репродуктивный потенциал популяции -численность популяции падает. Поэтому генетическая гибель – бремя для популяции. Ее также называют генетическим грузом .

    Генетический груз – часть наследственной изменчивости популяции, определяющая появление менее приспособленных особей, подвергающихся избирательной гибели в результате естественного отбора. Генетический груз - неизбежное следствие генетического полиморфизма.

    Существует 3 типа генетического груза:

    Мутационный;

    Сегрегационный;

    Субституционный.

    Каждый тип генетического груза коррелирует с определенным типом естественного отбора.

    Мутационный генетический груз - побочное действие мутационного процесса. Стабилизирующий естественный отбор удаляет вредные мутации из популяции.

    Сегрегационный генетический груз – характерен для популяций, использующих преимущество гетерозигот. Удаляются хуже приспособленные гомозиготные особи. Если обе гомозиготы летальны – половина потомков погибает.

    Субституционный генетический груз – происходит замена старого аллеля новым. Соответствует движущей форме естественного отбора и переходному полиморфизму.

    Генетический полиморфизм создает все условия для протекающей эволюции. При появлении нового фактора в среде популяция способна адаптироваться к новым условиям.

    Пример - устойчивость насекомых к различным видам инсектицидов.

    Генетический груз в популяциях людей

    Впервые генетический груз в популяции человека был определен в 1956г в Северном полушарии и составил 4%, т.е. 4% детей рождались с наследственной патологией.

    При этом за последующие годы в биосферу было выброшено более миллиона химических соединений: более 6000 ежегодно, ежедневно - 63000 соединений. Растет влияние источников радиоактивного излучения. Структура ДНК нарушается.

    Сегодня 3% детей в США страдают от врожденной умственной отсталости (не обучаются даже в средней школе).

    Число врожденных отклонений увеличилось в 1,5 – 2 раза (10%). Медицинские генетики говорят о 12-15%.

    Вывод: необходимо беречь окружающую среду.

    Так же как и в популяциях других организмов, наследственное разнообразие снижает реальную приспособленность популяций людей. Бремя генетического груза человечества можно оценить, введя понятие летальных эквивалентов. Считают, что число их в пересчете на гамету колеблется от 1,5 до 2,5 или от 3 до 5 на зиготу. Это означает, что то количество неблагоприятных аллелей, которое имеется в генотипе каждого человека, по своему суммарному вредному действию эквивалентно действию 3-5 рецессивных аллелей, приводящих в гомозиготном состоянии к смерти индивидуума до наступления репродуктивного возраста.

    При наличии неблагоприятных аллелей и их сочетаний примерно половина зигот, образующихся в каждом поколении людей, в биологическом плане несостоятельна. Такие зиготы не участвуют в передаче генов следующему поколению. Около 15% зачатых организмов гибнет до рождения, 3 - при рождении, 2 - непосредственно после рождения, 3 - умирает, не достигнув половой зрелости, 20 - не вступают в брак, 10% браков бездетны.

    Неблагоприятные последствия генетического груза в виде рецессивных аллелей, если они не приводят к гибели организма, проявляются в снижении ряда важных показателей состояния индивидуума, в частности его умственных способностей. Исследования, проведенные на популяции арабов в Израиле, для которой характерна высокая частота близкородственных браков (34% между двоюродными и 4% между дважды двоюродными сибсами), показали снижение умственных способностей у детей от таких браков.

    Исторические перспективы человека в силу его социальной сущности не связаны с генетической информацией, накопленной видом Homo sapiens в ходе эволюции. Тем не менее человечество продолжает «оплачивать» эти перспективы, теряя в каждом поколении часть своих членов из-за их генетической несостоятельности.

    Примерами генетического груза в человеческих популяциях являются аллели мутантных форм гемоглобина - Гемоглобина С и Гемоглобина S (патологические (аномальные) гемоглобины отличаются от нормального гемоглобина физико-химическими свойствами и молекулярной структурой глобиновой части. Присутствие в эритроцитах аномальных или патологических гемоглобинов приводит к состояниям, которые называются гемоглобинозы или гемоглобинопатии и являются наследственными аномалиями кроветворения).

    Hb С - в этом виде гемоглобина происходит замена в 6-м положении β-полипептидной цепи глутаминовой кислоты на лизин. Встречается преимущественно в Западной Африке. Эта мутантная форма снижает пластичность эритроцитов организма. В гетерозиготном организме (один аллель, кодирующий нормальный гемоглобин и один мутантный аллель) 28-44 % гемоглобина представлены гемоглобином С, анемия не развивается. У гомозигот почти весь гемоглобин находится в мутантной форме, вызывая умеренную гемолитическую анемию. У таких пациентов кристаллы гемоглобина С можно обнаружить при анализе мазка крови. Присутствие комбинации гемоглобинов С и S вызывает более тяжёлые формы анемии.

    HbS - глутаминовая кислота в 6-м положении β-цепи глобина замещена на валин. Поскольку валин имеет неполярный радикал, располагающийся на поверхности молекулы, в результаты этой замены растворимость гемоглобина резко падает. HbS обладает пониженной стойкостью к разрушению и пониженной кислород-транспортирующей способностью, а заполненные им (или смесью нормального HbА и HbS) эритроциты имеют более короткий срок жизни и быстрее разрушаются в печени или селезенке. Это дает преимущество гетерозиготам в районах с высокой смертностью от малярии, так как мерозоиты малярийного плазмодия не успевают закончить свое развитие в таких эритроцитах. Эритроциты, несущие HbS деформируются из-за кристаллизации гемоглобина в них, приобретают серповидную форму (серповидно-клеточная анемия), теряют пластичность мембраны и способность проходить через мелкие капилляры. Застревая в капиллярах, такие эритроциты разрушаются и образуют тромбы (хроническая капилляропатия).