Реализация генетической информации. Особенности реализации наследственной информации у эукариот

Вспомните!

Какова структура белков и нуклеиновых кислот?

Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала. Соединяясь, молекулы аминокислот образуют так называемые пептидные связи. Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации - вторичную структуру. И наконец, спираль полипептида сворачивается, образуя клубок (глобулу). Именно такая третичная структура белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной. Вторичная структура – это полипептидная цепь, закрученная в спираль. Для более прочного взаимодействия во вторичной структуре, происходит внутримолекулярное взаимодействие с помощью –S–S– сульфидных мостиков между витками спирали. Это обеспечивает прочность данной структуры. Третичная структура – это вторичная спиральная структура закручена в глобулы – компактные комочки. Эти структуры обеспечивают максимальную прочность и большую распространенность в клетках по сравнению с другими органическими молекулами.

ДНК – двойная спираль, РНК – одинарные цепи, состоящие из нуклеотидов.

Какие типы РНК вам известны?

и-РНК, т-РНК, р-РНК.

и-РНК – синтезируется в ядре на матрице ДНК, является основой для синтеза белка.

т-РНК – транспорт аминокислот к месту синтеза белка – к рибосомам.

Где образуются субъединицы рибосом?

р-РНК – синтезируется в ядрышках ядра, и образует сами рибосомы клетки.

Какую функцию рибосомы выполняют в клетке?

Биосинтез белка – сборка белковой молекулы

Вопросы для повторения и задания

1. Вспомните полное определение понятия «жизнь».

Ф. Энгельс «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка. И у неорганических тел может происходить подобный обмен веществ, который и происходит с течением времени повсюду, так как повсюду происходят, хотя бы и очень медленно, химические действия. Но разница заключается в том, что в случае неорганических тел обмен веществ разрушает их, в случае же органических тел он является необходимым условием их существования»

2. Назовите основные свойства генетического кода и поясните их значение.

Код триплетен и избыточен – из 4 нуклеотидов можно создать 64 разных триплетов, т.е. закодировать 64 аминокислоты, но в живом используется только 20.

Код однозначен – каждый триплет шифрует только одну аминокислоту.

Между генами имеются знаки препинания – знаки необходимы для правильной группировки в триплеты монотонной последовательности нуклеотидов, т.к. между триплетами нет знаков раздела. Роль разметки генов выполняют три триплета, не кодирующие никаких аминокислот – УАА, УАГ, УГА. Они означают конец белковой молекулы, как точка в предложении.

Внутри гена нет знаков препинания – поскольку генкод подобен языку; посмотрим это свойство на примере фразы:

ЖИЛ БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ

Ген хранится в таком виде:

ЖИЛБЫЛКОТТИХБЫЛСЕРМИЛМНЕТОТКОТ

Смысл будет восстановлен, если правильно сгруппировать тройки, даже при отсутствии знаков препинания. Если же мы начнем группировку со второй буквы (второго нуклеотида), то получится такая последовательность:

ИЛБ ЫЛК ОТТ ИХБ ЫЛС ЕРМ ИЛМ НЕТ ОТК ОТ

Эта последовательность уже не имеет биологического смысла, и если она будет реализована, то получится чужеродное для данного организма вещество. Поэтому ген в цепи ДНК имеет строго фиксированное начало считывания и завершение.

Код универсален – един для всех живущих на Земле существ: у бактерии, грибов, человека одни и те же триплеты кодируют одни и те же аминокислоты.

3. Какие процессы лежат в основе передачи наследственной информации из поколения в поколение и из ядра в цитоплазму, к месту синтеза белка?

В основе передачи наследственной информации из поколения в поколение лежит мейоз. Транскрипция (от лат. transcription - переписывание). Информация о структуре белков хранится в виде ДНК в ядре клетки, а синтез белков происходит на рибосомах в цитоплазме. В качестве посредника, передающего информацию о строении определённой белковой молекулы к месту её синтеза, выступает информационная РНК. Трансляция (от лат. trans lation - передача). Молекулы иРНК выходят через ядерные поры в цитоплазму, где начинается второй этап реализации наследственной информации - перевод информации с «языка» РНК на «язык» белка.

4. Где синтезируются все виды рибонуклеиновых кислот?

Все виды РНК синтезируются на матрице ДНК.

5. Расскажите, где происходит синтез белка и как он осуществляется.

Этапы биосинтеза белка:

– Транскрипция (от лат. переписывание): процесс синтеза и-РНК на матрице ДНК, это перенос генетической информации с ДНК на РНК, транскрипция катализируется ферментом РНК-полимеразой. 1) Движения РНК-полимеразы – расплетание и восстановление двойной спирали ДНК, 2) Информация с гена ДНК – на и-РНК по принципу комплементарности.

– Соединение аминокислот с т-РНК: Строение т-РНК: 1) аминокислота ковалентно присоединяется т-РНК с помощью фермента т-РНК-синтетазы соответвственно антикодону, 2) К черешку листа т-РНК присоединяется определенная аминокислота

– Трансляция: рибосомный синтез белка из аминокислот на и-РНК, протекающий в цитоплазме. 1) Инициация - начало синтеза. 2) Элонгация - собственно синтез белка. 3) Терминация - узнавание стоп-кодона – окончание синтеза.

6. Рассмотрите рис. 45. Определите, в каком направлении - справа налево или слева направо - движется относительно и-РНК изображённая на рисунке рибосома. Докажите свою точку зрения.

и-РНК движется свела направо рибосома всегда движется в противоположном направлении, чтобы не мешать процессы, так как на одной нити и-РНК одновременно может сидеть несколько рибосом (полисома). А также показано в какую сторону движутся т-РНК – справа налево как и рибосома.

Подумайте! Вспомните!

1. Почему углеводы не могут выполнять функцию хранения информации?

Нет принципа комплементарности у углеводов, невозможно создавать генетические копии.

2. Каким образом реализуется наследственная информация о структуре и функциях небелковых молекул, синтезируемых в клетке?

Образование в клетках других органических молекул, таких как жиры, углеводы, витамины и т. д., связано с действием белков-катализаторов (ферментов). Например, ферменты, обеспечивающие синтез жиров у человека, «делают» человеческие липиды, а аналогичные катализаторы у подсолнечника - подсолнечное масло. Ферменты углеводного обмена у животных образуют резервное вещество гликоген, а у растений при избытке глюкозы синтезируется крахмал.

3. При каком структурном состоянии молекулы ДНК могут быть источниками генетической информации?

В состоянии спирализации, так как в таком состоянии ДНК входит в состав хромосом.

4. Какие особенности строения молекул РНК обеспечивают их функцию переноса информации о структуре белка от хромосом к месту его синтеза?

и-РНК – синтезируется в ядре на матрице ДНК, является основой для синтеза белка. Состав РНК – нуклеотиды комплементарные нуклеотидам ДНК, малый размер по сравнению с ДНК (что обеспечивает выход из ядерных пор).

5. Объясните, почему молекула ДНК не могла быть построена из нуклеотидов трёх типов.

Код триплетен и избыточен – из 4 нуклеотидов можно создать 64 разных триплетов (43), т.е. закодировать 64 аминокислоты, но в живом используется только 20. Это необходимо для замены любого нуклеотида, если вдруг в клетке его нет, то нуклеотид будет автоматически заменен на аналогичный, кодирующий эту же аминокислоту. Если бы было три нуклеотида, то 33 это будет всего 9 аминокислот, что невозможно, так как необходимо 20 аминокислот для любого организма.

6. Приведите примеры технологических процессов, в основе которых лежит матричный синтез.

Матричный принтер,

Нанотехнологии,

Матрица фотоаппарата

Матрица экрана ноутбука

Матрица жидко-кристаллических экранов

7. Представьте, что в ходе некоего эксперимента для синтеза белка были взяты тРНК из клеток крокодила, аминокислоты мартышки, АТФ дрозда, иРНК белого медведя, необходимые ферменты квакши и рибосомы щуки. Чей белок был в итоге синтезирован? Объясните свою точку зрения.

Генетический код зашифрован в и-РНК, значит – белого медведя.

Генетический код – способ записи в молекуле ДНК информации о количестве и порядке расположения аминокислот в белке.

Свойства:

    Триплетность - одна аминокислота кодируется тремя нуклеотидами

    Неперекрываемость - один и тот же нуклеотидне может входить одновременно в состав двух или более триплетов

    Однозначность (специфичность) - определённый кодон соответствует только одной

    Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусовдочеловека

    Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.

14.Этапы реализации наследственной информации у прокариот и эукариот.

Репликация (синтез) ДНК

Синтез ДНК всегда начинается в строго определенных точках. Фермент топоизомераза раскручивает спираль. Геликаза разрушает водородные связи между цепями ДНК и образует вилку репликаций. SSB-белки препятствуют повторному формированию водородных связей.

РНК-праймаза синтезирует короткие фрагменты РНК (праймеры),которые присоединяются к 3"-концу.

ДНК-полимераза начинают от праймера и синтезирует дочернюю цепь(5" 3")-

Направление синтеза одной цепи ДНК совпадает с направлением движения вилки репликаций, поэтому данная цепь синтезируется непрерывно. Здесь синтез идет быстро. Направление синтеза второй цепи противоположно напралению вилки репликаций. Поэтому синтез данной цепи происходит в виде отдельных участков и идет медленно (фрагменты Оказаки).

Созревание ДНК: отщепляется РНК-праймеры, достраиваются недостающие нуклеотиды, фрагменты ДНК соединяются с помощью лигазы. Топоизомераза раскручивает спираль.

Этапы реализации наследственной информации (у эукариот)

1.Транскрипция

2.Процессинг

3.Трансялция

4.Посттрансляционные изменения

Трансляция – синтез молекулы РНК на основе молекулы ДНК. Ключевой фермент – РНК-полимераза.

РНК-полимераза должна распознать промотер и взаимодействовать с ним. Промотер –особый участок ДНК, который располагается перед информативной частью гена. Взаимодействие с промотором необходимо для активации РНК-полимеразы. После активации РНК-полимераза обеспечивает разрыв водородных связей между цепями ДНК.

Синтез РНК всегда происходит по определенной кодогенной цепи ДНК.На этой цепи промотер располагается ближе к 3"-концу.

Синтез РНК происходит по принципам комплементарности и антипараллельности.

РНК-полимераза достигает стоп-кодона (терминатор или терминирующей кодон).Это является сигналом для прекращения синтеза. Фермент инактивируется, отделяется от ДНК при этом освобождается вновь синтезированная молекула ДНК – первичный трансткрипт – про-РНК. Восстанавливается исходная структура ДНК.

Особенности строения гена эукариот:

У эукариотов гены включают в себя различные по функции участки

А) Интроны- фрагменты ДНК (гена), которые не кодируют аминокислоты в белке

Б)Экзоны – участки ДНК, которые кодируют аминокислоты в белке.

Прирывистая природа гена была обнаружена Роберцом и Шарпом (Ноб. Премия 1903г).

Количество интронов и экзонов в разных генах сильно отличается.

Процессинг (созревание)

Происходит созревание первичного транскрипта и образуется зрелая молекула матричной РНК, которая может участвовать в синтезе белка на рибосомах.

    На 5"- конце РНК формируется особый участок (структура) – КЭП или шапочка. КЭП обеспечивает взаимодействие с малой субъединицей рибосомы.

    На 3"-конце РНК присоединяется от 100 до 200 молекул нуклеотидов, несущих аденин (полиА). При синтезе белка эти нуклеотиды постепенно отщепляется, разрушение полиА является сигналом для разрушения молекул РНК.

    К некоторым нуклеотидам РНК присоединяется группа CH 3 – метилирование. Это увеличивает устойчивость ДНК к действию ферментов цитоплазмы.

    Сплайсинг – происходит вырезание интронов и сшивание между собой экзонов. Фермент рестриктаза удаляет, лигаза- сшивает)

Зрелая матричная РНК включает в себя:

Лидер обеспечивает связывание матричной РНК с субъединицей рибосомы.

СК – стартовый кодон – одинаковый у всех матричных РНК, кодирует аминокислоту

Кодирующий участок – кодирует аминокислоты в белке.

Стоп-кодон – сигнал о прекращаемся синтезе белка.

Во время процессинга происходит жесткий отбор в цитоплазму из ядра выходит около 10% молекул от числа первичных транскриптов.

Альтернативный сплайсинг

У человека имеется 25-30 тысяч генов.

Однако у человека выделено около 100 тысяч белков.

Альтернативный сплайсинг – это ситуация, при которой в клетках разных тканей один и тот же ген обеспечивает синтез одинаковых молекул проРНК. В разных клетках по разному определяется количество и границы между экзонами и интронами. В результате из одинаковых первичных транскриптов получаются различные мРНК и синтезируются разные белки.

Альтернативный сплайсинг доказан примерно для 50% генов человека.

Трансляция – это процесс сборки пептидной цепи на рибосомах согласно информации, заложенной в иРНК.

1.Инициация (начало)

2.Элонгация (удлинение молекулы)

3.Терминация (конец)

Инициация.

Молекула матрРНК с помощью КЭПа контактирует с малой субъединицей рибосомы. С помощью лидера РНК связывается с субъединицей рибосомы. К стартовому кодону присоединяется транспРНК, которая несет транспортную кислоту метионин. Затем присоединяется большая субъединица рибосомы. В целой рибосоме формируется два активных центра: аминоацильный и пептидильный. Аминоакцильный свободен, а пептидильный занят тРНК с метионином.

Элонгация.

В аминоакцильный цент входит мРНК, антикодон которой соответствует кодируещему.

После этого рибосома сдвигается относительно мРНК на 1 кодон.При этом аминоакцильный центр освобождается. В пептидильном центре находится мРНК, соединяется с второй аминокислотой. Процесс циклически повторяется.

3.Терминация

В аминоацильный центр поступает стоп-кодон, который распознается специальным белком, это является сигналом для прекращения синтеза белка. Субъединицы рибосомы разъединяются, освобождая при этом мРНК и вновь синтезируется полипептид.

4.Пострансляционные изменения.

При трансляции образуется первичная структура полипептида.Этого недостаточно для выполнения функций белка, поэтому белок изменяется, что обеспечивает его активность.

Образуется:

А) вторичная структура (водородные связи)

Б)глобула – третичная структура (дисульфидные связи)

В) четвертичная структура – гемоглобин

Г)Гликозилирование – присоединение к белку остатков сахаров (антитела)

Д) расщепление большого полипептида на несколько фрагментов.

Различия в реализации наследственной информации прокариот и эукариот:

1.У прокариот отстутсвуют экзоны и интроны, поэтому отсутствуют этапы процессинга и сплайсинга.

2.У прокариот транскрипция и трансляция происходит одновременно, т.е. идет синтез РНК и уже начинается синтез ДНК.

3.У эукариот синтез различных видов РНК контролируется различными ферментами. У прокариот все типы РНК синтезируются одним ферментом

4.У эукариот каждый ген имеет свой собственный уникальный промотер, у прокариот один промотер может контролировать работу несколькихгенов.

5. Только у прокариот имеется система Оперона

1. Какие процессы относятся к реакциям матричного синтеза?

Брожение, трансляция, транскрипция, фотосинтез, репликация.

К реакциям матричного синтеза относятся трансляция, транскрипция и репликация.

2. Что такое транскрипция? Как протекает этот процесс?

Транскрипция – процесс переписывания генетической информации с ДНК на РНК (биосинтез РНК на соответствующих участках одной из цепей ДНК); одна из реакций матричного синтеза.

Транскрипция осуществляется следующим образом. На определённом участке молекулы ДНК происходит разъединение комплементарных цепей. Синтез РНК будет осуществляться на одной из цепей (её называют транскрибируемой цепью).

Фермент РНК-полимераза распознаёт промотор (особую последовательность нуклеотидов, расположенную в начале гена) и взаимодействует с ним. Затем РНК-полимераза начинает двигаться вдоль транскрибируемой цепи и при этом синтезировать из нуклеотидов молекулу РНК. Транскрибируемая цепь ДНК используется в качестве матрицы, поэтому синтезированная РНК будет комплементарной соответствующему участку транскрибируемой цепи ДНК. РНК-полимераза наращивает цепочку РНК, присоединяя к ней новые нуклеотиды, до тех пор, пока не дойдёт до терминатора (особой последовательности нуклеотидов, расположенной в конце гена), после чего транскрипция прекращается.

3. Какой процесс называется трансляцией? Охарактеризуйте основные этапы трансляции.

Трансляция – процесс биосинтеза белка из аминокислот, происходящий на рибосомах; одна из реакций матричного синтеза.

Основные этапы трансляции:

● Связывание иРНК с малой субъединицей рибосомы, после чего присоединяется большая субъединица.

● Проникновение в рибосому метиониновой тРНК и комплементарное связывание её антикодона (УАЦ) со стартовым кодоном иРНК (АУГ).

● Проникновение в рибосому следующей тРНК, несущей активированную аминокислоту, и комплементарное связывание её антикодона с соответствующим кодоном иРНК.

● Возникновение пептидной связи между двумя аминокислотами, после чего первая (метиониновая) тРНК освобождается от аминокислоты и покидает рибосому, а иРНК сдвигается на один триплет.

● Наращивание полипептидной цепи (по механизму, описанному выше), происходящее до тех пор, пока в рибосому не попадёт один из трёх стоп-кодонов (УАА, УАГ или УГА).

● Прекращение синтеза белка и распад рибосомы на две отдельные субъединицы.

4. Почему при трансляции в состав белка включаются не любые аминокислоты в случайном порядке, а только те, которые закодированы триплетами иРНК, причём в строгом соответствии с последовательностью этих триплетов? Как вы думаете, сколько видов тРНК участвует в синтезе белков в клетке?

Правильное и последовательное включение аминокислот в растущую полипептидную цепь обеспечивается строгим комплементарным взаимодействием антикодонов тРНК с соответствующими кодонами иРНК.

Некоторые учащиеся могут ответить, что в синтезе белков участвует 20 видов тРНК – по одному для каждой аминокислоты. Но на самом деле в синтезе белков участвует 61 вид тРНК – их столько же, сколько существует смысловых кодонов (триплетов, кодирующих аминокислоты). Каждый вид тРНК имеет уникальную первичную структуру (последовательность нуклеотидов) и, как следствие, обладает особым антикодоном для комплементарного связывания с соответствующим кодоном иРНК. Например, аминокислота лейцин (Лей) может кодироваться шестью разными триплетами, поэтому существует шесть типов лейциновых тРНК, и все они имеют разные антикодоны.

Общее количество кодонов составляет 4 3 = 64, однако молекул тРНК к терминирующим кодонам (их три) не существует, т.е. 64 – 3 = 61 вид тРНК.

5. Реакции матричного синтеза следует относить к процессам ассимиляции или диссимиляции? Почему?

Реакции матричного синтеза относятся к процессам ассимиляции потому что:

● сопровождаются синтезом сложных органических соединений из более простых веществ, а именно – биополимеров из соответствующих мономеров (репликация сопровождается синтезом дочерних цепей ДНК из нуклеотидов, транскрипция – синтезом РНК из нуклеотидов, трансляция – синтезом белка из аминокислот);

● требуют затрат энергии (поставщиком энергии для реакций матричного синтеза служит АТФ).

6. Участок транскрибируемой цепи ДНК имеет следующий порядок нуклеотидов:

ТАЦТГГАЦАТАТТАЦААГАЦТ

Установите последовательность аминокислотных остатков пептида, закодированного этим участком.

По принципу комплементарности установим последовательность нуклеотидов соответствующей иРНК, а затем с помощью таблицы генетического кода определим последовательность аминокислотных остатков закодированного пептида.

Ответ: последовательность аминокислотных остатков пептида: Мет–Тре–Цис–Иле–Мет–Фен.

7. Исследования показали, что в молекуле иРНК 34% от общего числа азотистых оснований приходится на гуанин, 18% - на урацил, 28% - на цитозин и 20% - на аденин. Определите процентный состав азотистых оснований двуцепочечного участка ДНК, одна из цепей которого служила матрицей для синтеза данной иРНК.

● По принципу комплементарности определим процентный состав азотистых оснований соответствующей транскрибируемой цепи ДНК. Она содержит 34% цитозина (комплементарен гуанину иРНК), 18% аденина (комплементарен урацилу иРНК), 28% гуанина (комплементарен цитозину иРНК) и 20% тимина (комплементарен аденину иРНК).

● На основании состава транскрибируемой цепи определим процентный состав азотистых оснований комплементарной (нетранскрибируемой) цепи ДНК: 34% гуанина, 18% тимина, 28% цитозина и 20% аденина.

● Процентное содержание каждого типа азотистых оснований в двуцепочечной ДНК рассчитывается как среднее арифметическое процентного содержания этих оснований в обеих цепях:

Ц = Г = (34 % + 28 %) : 2 = 31 %

А = Т = (18 % + 20%) : 2 = 19 %

Ответ: соответствующий двухцепочечный участок ДНК содержит по 31% цитозина и гуанина, по 19% аденина и тимина.

8*. В эритроцитах млекопитающих синтез гемоглобина может происходить ещё в течение нескольких дней после утраты этими клетками ядер. Как вы можете это объяснить?

Потере ядра предшествует интенсивная транскрипция генов, кодирующих полипептидные цепи гемоглобина. В гиалоплазме накапливается большое количество соответствующих иРНК, поэтому синтез гемоглобина продолжается даже после утраты клеточного ядра.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.

информации

Все морфологические, анатомические и функциональные особенности любой клетки и организма в целом определяются структурой специфических белков, входящих в состав клеток. Способность к синтезу только строго определенных белков является характерным свойством, присущим как для каждого вида, так и для отдельных организмов.

В молекуле ДНК может быть закодирована аминокислотная последовательность для многих белков. Участок молекулы ДНК, несущий информацию о структуре одного белка, называется геном.

Определенная последовательность расположения аминокислот в гюлипептидной цепочке (первичная структура белка) определяет специфичность белковой молекулы, а, следовательно, и специфичность признаков, которые определяются данным белком.

От расположения аминокислот в полипептидной цепочке белковой молекулы зависят биологические свойства белков, их специфичность. Таким

образом, первичная структура белковой молекулы определяется определенной последовательностью нуклеотидов в участке ДНК (гене).

Генетический код - это определенное расположение нуклеотидов в молекуле ДНК, кодирующих аминокислоты в молекуле белка.

Для кодирования 20 аминокислот в молекуле ДНК используются четыре различных азотистых основания (аденин, тимин, цитозин, гуанин). Каждая аминокислота кодируется группой из трёх мононуклеотидов, которая называется триплетом (см.таблицу 1)

Свойства генетического кода :

    триплвтность - одна аминокислота кодируется одним триплетом, в состав которого входит три нуклеотида. Такой триплет называется кодоном. При комбинации четырёх нуклеотидов по три 4 3 вероятные сочетания составят 64 варианта (триплета),что более, чем достаточно для кодирования 20 аминокислот;

    «вырожденность», или избыточность генетического кода, т.е. одну и ту же аминокислоту может кодировать несколько триплетов, так как известно 20 аминокислот и 64 кодона, например, фенил-аланин кодируется двумя триплетами (УУУ, УУЦ), изолейцин - тремя (АУУ,АУЦАУА);

    неперекрываемость, т.е. между триплетами в молекуле ДНК не существует разделительных знаков, они расположены в линейном порядке, следуя один за другимтри рядом расположенных нуклеотида образуют один триплет;

    линейность и отсутствие знаков разделения, т.е. триплеты в молекуле ДНК следуют один за другим в линейном порядке без знаков остановки; если произойдёт выпадение одного нуклеотида, то произойдёт "сдвиг рамки", что приведёт к изменению последовательности нуклеотидов в молекуле РНК, и, следовательно, изменению последовательности аминокислот в молекуле белка;

    универсальность, т.е. для всех организмов, начиная с прокариот и заканчивая человеком, 20 аминокислот кодируются одними и теми же триплетами, что является одним из доказательств единства происхождения всего живого на Земле

    коллинеарность (соответствие) - .линейное расположение нуклеотидов в молекуле ДНК соответствует линейному расположению аминокислот в молекуле белка

Таблица 1 Генетический код

Первое основание

Втораое основание

Третье основание

Этапы реализации генетической информаци и

I. Т ранскрипция - синтез всех видов РНК на матрице ДНК. Транскрипция, или переписывание, происходит не на всей молекуле ДНК, а на участке, отвечающем за определенный белок (ген). Условия, необходимые для транскрипции:

а) разкручивание участка ДНК с помощью расплетающих белков- ферментов

б) наличие строительного материала в виде АТФ. ГТФ. УТФ. 1ДТФ

в) ферменты трансктипции - РНК-полимеразы I, II, III

г) енергия в виде АТФ.

Транскрипция происходит по принципу комплементарности. При этом с помощью специальных белков-ферментов участок двойной спирали ДНК раскручивается, является матрицей для синтеза иРНК. Затем вдоль цепи ДНК

движется фермент РНК-полимераза, соединяя между собой нуклеотиды по принципу комплементарности в растущую цепь РНК. Затем одноцепочечная РНК отделяется от ДНК и через поры в мембране ядра покидает клеточное ядро (рис. 5)

Рис. 5 Схематическое изображение транскрипции.

Различия в транскрипции про- и эукариот.

По химической организации наследственного материала эукариоты и прокариоты принципиально не отличаются. Известно, генетический материал представлен ДНК.

Наследственный материал прокариот содержится в кольцевой ДНК, которая располагается в цитоплазме клетки. Гены прокариот состоят целиком из кодирующих нуклеотидных последовательностей.

Гены эукариот содержат информативные участки -экзоны, которые несут информацию об аминокислотной последовательности белков, и неинформативные участки - интроны, не несущие информации.

Соответственно, транскрипция информационной РНК у эукариот проходит в 2 этапа:

S) переписываются (транскрибируются) все участки (интроны и экзоны) -такая иРНК называется незрелой или про-иР НК.

2). процес синг - созревание матричной РНК. С помощью специальных ферментов вырезаются интронные участки, затем сшиваются экзоны. Явление сшивания екзонов называется сплайсингом. Посттранскрипционное дозревание молекулы РНК происходит в ядре.

II. Трансляция (translation), или биосинтез белка. Суть трансляции -перевод четырехбуквенного шифра азотистых оснований на 20-буквенный «словарь» аминокислот.

Процесс трансляции состоит в переносе закодированной в иРНК генетический информации в аминокислотную последовательность белка. Осуществляется биосинтез белка в цитоплазме на рибосомах и состоит из нескольких этапов:

    Подготовительный этап (активация аминокислот), состоит в ферментативном связывании каждой аминокислоты с своей тРНК и образовании комплекса аминокислота - тРНК.

    Собственно синтез белка, который включает три стадии:

а) инициация - иРНК связывается с малой субъединицей рибосомы, первыми кодонами, инициирующими, являются АУТ или ГУГ. Этим кодонам соответствует комплекс метионил -тРНК. Кроме того, в инициации участвует три белковых: фактора, облегчающие связывание мРНК с большой субчастицей рибосомы, образуется инициаторный комплекс

б) элонгация - удлинение полипептидной цепочки. Процесс осуществляется в 3 шага и заключается в связывании кодона мРНК с антикодоном тРНК по принципу комплементарности в активном центре рибосомы, затем в образовании пептидной связи между двумя остатками аминокислот и перемещении дипептида на шаг вперёд и, соответственно, передвижения рибосомы вдоль иРНК на один ко дон вперед


в) терминация - окончание трансляции, зависит от присутствия в иРНК терминирующих кодонов или "стоп-сигналов" (УАА,УГА,УАГ) и белковых ферментов - факторов терминации (рис. 6).

Рис. 6. Схема трансляции

а)стадия элонгации;

б)поступления синтезированного белка в эндоплазматическую сеть

В клетке для синтеза белка используется не одна, а несколько рибосом. Такой работающий комплекс иРНК с несколькими рибосомами называется полирибосомой . В таком случае синтез белка происходит быстрее, чем при использовании только одной рибосомы.

Уже в ходе трансляции белок начинает укладываться в трёхмерную структуру, а при необходимости в цитоплазме принимает четвертичную организацию.


Рис 7 Роль нуклеиновых кислот в передаче генетической информации

Лексико-грамматические задания:

являться

определяться

кодироваться чем

характеризоваться

называться

Задание №1. Слова и словосочетания, данные в скобках, напишите в правильной форме.

    Все морфологические, анатомические и функциональные особенности любой клетки и организма в целом определяются (структура специфических белков).

    Последовательность расположения аминокислот в полипептидной цепочке определяется (последовательность) нуклеотидов в участке ДНК, котрый называется (ген), а последовательность нуклеотидов в ДНК называется (генетический код).

    Каждая аминокислота кодируется (группа из трёх нуклеотидов), которая называется (триплет).

    Генетический код характеризуется (следующие признаки: триплетность, вырожденность, непрекрываемость, линейность и отсутствие запятых, универсальность).

    20 аминокислот кодируются (одни и те же триплеты).

Задание №2. Вместо точек используйте краткие и полные формы причастия, образованные от глаголов кодироваться - закодироваться.

    Последовательность нуклеотидов в ДНК, ... определённые аминокислоты в молекуле белка, называется генетическим кодом.

    Одна и та же кислота может быть... несколькими триплетами.

    20 аминокислот... одними и теми же триплетами.

    Различают структурные гены, ... структурные и ферментные белки, а так же гены с информацией для синтеза тРНК и рРНК и др.

    Следующим этапом реализации генетической информации, ... в гене, является транскрипция.

принципиально (не) отличаются существенно по какому признаку

значительно

По химической организации материала наследственности эукариоты и прокариоты принципиально не отличаются. Генетический материал у них представлен ДНК.

Задание№3. Прочитайте часть текста «Различие транскрипции у про- и эукариот». Расскажите о этапах реализации наследственной информации.

Задание №4. Закончите предложения, опираясь на информацию текста.

    Наследственный материал прокариот содержится в....

    Гены прокариот состоят целиком из....

    Гены эукариот содержат....

    Транскрипция у эукариот происходит в....

    Трансляция состоит в переносе закодированной в иРНК генетической информации в....

    Трансляция осуществляется в цитоплазме на....

Задание №5. Составьте схему этапов трансляции и расскажите по схеме о поэтапном осуществлении трансляции.

Решение типовых задач

Участки структурных генов у про- и эукариот имеют сходные последовательности нуклеотидов:

ЦАТ-ГТЦ-АЦА-"ПТД-ТГА-ААА-ЦАА-ЦЦГ-АТА-ЦЦЦ-ЦТГ-ЦГГ-ЦТТ-ГГА-АЦА-АТА. Причем, у эукариот последовательность нуклеотидов АЦА-ТТЦ-ТГА-ААА и ГГА-АЦА-АТА кодируют интронные участки про и-РНК. Используя словарь генетического кода, определите:

а) какую последовательность нуклеотидов будет иметь иРНК, транскрибируемая с этого участка ДНК у прокариот;

б) какую последовательность нуклеотидов будет иметь иРНК, транскрибируемая с этого участка ДНК у еукариот;

в) какую последовательность аминокислот будет иметь белок, кодируемый данным участком гена у про- и эукариот.

Хранящаяся в ДНК генетическая информация реализуется в процессе биосинтеза белка.

ДНК сосредоточена в ядре клетки, а белки синтезируются в цитоплазме на рибосомах. Для биосинтеза белка необходимо доставить генетическую информацию из ядра клетки к рибосомам. Роль посредника, обеспечивающего передачу генетической информации от ядра клетки к рибосомам, выполняют матричные, или информационные, РНК (мРНК, или иРНК).

Матричные РНК представляют собой полинуклеотидные цепочки с молекулярными массами от 150 тысяч до 5 миллионов дальтон. Они синтезируются в ядре клетки. В ходе биосинтеза мРНК генетическая информация «переписывается» с небольшого участка ДНК, включающего один или несколько генов, на молекулу мРНК. Синтез матричной РНК на значащей нити ДНК получил название транскрипции (лат. «transcriptio » - переписывание).

Процесс транскрипции генетической информации сходен с процессом репликации ДНК. Биосинтез мРНК начицается с расплетания двойной спирали ДНК на небольшом участке.

Свободные рибонуклеозидтрифосфаты с помощью Водородных связей присоединяются к нуклеотидам расплетенного участка ДНК в соответствии с принципом комплементарности азотистых оснований.

Образование мРНК происходит путем переноса от рибонуклеозидтрифосфатов остатков рибонуклеотидов к третьему атому углерода рибозы концевого нуклеотида синтезируемой полинуклеотидной цепи. При этом происходит разрыв Макроэргических связей в молекулах рибонуклеозидтрифосфатов с выделением пирофосфата, что обеспечивает процесс транскрипции необходимой энергией. Биосинтез мРНК катализирует фермент РНК-полимераза.

Большую роль в процессе транскрипции играют специальные белки, которые тонко регулируют его ход.

Синтезированная в процессе транскрипции мРНК Поступает из ядра клетки в рибосому - цитоплазматическую серганеллу, по химической природе представляющую собой нукдеопротеид - сложный белок, небелковым компонентом которого является рибонуклеиновая кислота.

РНК, участвующие в построении тела рибосомы («рибонуклеиновая кислота» + гр. «сома» - тело), называют рибосомальными (рРНК). Рибосомы построены из двух субчастиц - большой и малой. В построении каждой из них участвуют большое количество разных белков и различные рРНК. Молекулярная масса рибосомальных РНК колеблется от 55000 до 1600000 дальтон и более. Синтез рРНК, также как и синтез мРНК, происходит в ядре клетки и контролируется ДНК.

Матричная РНК закрепляется в рибосоме. Теперь рибосоме необходимо воспроизвести полученную информацию, записанную в нуклеотидной последовательности мРНК четырехбуквенным «языком» азотистых оснований, на двадцатибуквенном «языке» в виде последовательности аминокислот в полипептидной цепочке синтезируемого белка. Процесс перевода генетической информации с «языка» азотистых оснований на «язык» аминокислот называют трансляцией (лат. «translation» - передача).

Доставку аминокислот к рибосомам обеспечивают транспортные РНК (тРНК). Молекулярные массы тРНК относительно невелики и варьируют в пределах от 17000 до 35000 дальтон. Синтезом тРНК в клетке управляет ДНК.

Процесс биосинтеза белка требует энергетических затрат. Для того чтобы аминокислоты соединились друг с другом пептидной связью, их необходимо активировать. Аминокислоты активируются с участием АТФ и тРНК. Эти реакции катализирует фермент аминоацил-тРНК-синтетаза.

Реакции активирования каждой из протеиногенных аминокислот катализируются своей аминоацил-тРНК-синтетазой.

Эти ферменты позволяют аминокислотам и тРНК безошибочно узнавать друг друга. В результате каждая аминокислота присоединяется к конкретной тРНК. Транспортные РНК называют по присоединяющейся аминокислоте, например: валиновая тРНК, аланиновая тРНК, сериновая тРНК и т. д.

Полинуклеотидные цепочки тРНК имеют пространственную структуру, напоминающую по форме клеверный лист. К одному из концов тРНК присоединяется аминокислота. На другой стороне молекулы тРНК в одной из петель «клеверного листа» имеется триплет нуклеотидов, называемый антикодоном. Этот антикодон комплементарен одному из триплетов мРНК - кодону. Генетический код кодона соответствует аминокислоте, соединенной с тРНК, обладающей комплементарным антикодоном.

Кодоны в зрелой мРНК следуют один за другим непрерывно: они не отделены друг от друга некодирующими участками и не перекрываются.

Аминоацил-тРНК последовательно поступают в рибосомы.

Здесь всякий раз между комплементарными антикодоном тРНК и кодоном мРНК возникают водородные связи. При этом аминогруппа последующей аминокислоты взаимодействует с

Карбоксильной группой предыдущей аминокислоты с образованием пептидной связи.

Синтез любого белка в клетке всегда начинается с N-конца. После образования между аминокислотами пептидной связи рибосома перемещается вдоль цепи мРНК на один кодон. Когда рибосома достигает участка мРНК, содержащего один из трех «бессмысленных» триплетов - УАА, УАГ или УГА, дальнейший синтез полипептидной цепи обрывается. Для этих триплетов в клетке не существует тРНК с комплементарными антикодонами. «Бессмысленные» триплеты располагаются в конце каждого гена и показывают, что синтез данного белка на этом необходимо завершить. Поэтому эти триплеты называют терминирующими (лат. «terminalis» - конечный). По окончании процесса трансляции генетического кода полипептидная цепочка покидает рибосому и формирует свою пространственную структуру, после чего белок приобретает способность к реализации присущей ему биологической функции. Процесс реализации генетической информации в результате транскрипции и трансляции называют экспрессией (лат. «expressio» - выражение) гена.

Биосинтез белка в клетке протекает не на отдельной рибосоме.

Матричная РНК связывается одновременно с несколькими рибосомами, при этом образуется полирибосомальный комплекс. В результате в клетке происходит синтез сразу нескольких одинаковых молекул белка.