Нобелевская премия по биологии и медицине. Проблема на миллиарды: Нобелевскую премию по медицине дали за исследование биологических часов

Нобелевская премия в области физиологии и медицины в 2017 г. присуждена за открытие генов, определяющих работу биологических часов – внутриклеточного механизма, который управляет циклическими колебаниями биологических процессов, связанных со сменой дня и ночи. Суточные или присущи всем живым организмам, от цианобактерий до высших животных.

Безусловно, любой научный результат, получивший такое мировое признание, опирается на достижения предшественников. Впервые представление о биологических часах возникло еще в XVII в., когда французский астроном Жан Жак де Меран обнаружил, что суточный ритм движения листьев растений не исчезает даже в темноте: он жестко «запрограммирован», а не обусловлен действием окружающей среды.

С этого момента и началось изучение феномена биологических часов. Оказалось, что почти во всех живых организмах протекают циклические процессы с суточным или околосуточным периодом. И даже при отсутствии главного внешнего фактора синхронизации – смены дня и ночи, организмы продолжают жить по суточному ритму, хотя период этого ритма может быть больше/меньше продолжительности суток в зависимости от индивидуальных особенностей.

Генетическая основа биологических часов была впервые установлена в 1970-х гг., когда у плодовой мушки был открыт ген Per (от period). Авторы этого открытия, Сеймур Бензер и его ученик Рональд Конопка из Калифорнийского технологического института, провели масштабный эксперимент, работая с сотнями лабораторных линий мух, полученных с помощью химического мутагенеза. Ученые заметили, что при одинаковом периоде освещения у некоторых мух период суточного ритма сна и бодрствования становился либо существенно меньше обычных суток (19 ч), либо больше (28 ч); кроме того, была обнаружена «аритмиков» с полностью асинхронным циклом. Пытаясь идентифицировать гены, контролирующие циркадный ритм у дрозофил, ученые продемонстрировали, что нарушения этого ритма связаны с мутациями неизвестного гена или группы генов.

Таким образом будущие лауреаты Нобелевской премии Холл, Росбаш и Янг уже имели в своем распоряжении линии мух с генетически обусловленными изменениями периода сна и бодрствования. В 1984 г. эти ученые выделили и секвенировали искомый ген Per и выяснили, что уровень кодируемого им белка меняется с суточной периодичностью, достигая пика в ночное время и снижаясь днем.

Это открытие дало новый толчок к исследованиям, цель которых – понять, почему механизмы циркадных ритмов работают именно так, а не иначе, почему у разных индивидуумов суточный период может различаться, но при этом оказывается устойчив к действию внешних факторов, таких как температура (Pittendrich, 1960). Так, работы, выполненные на цианобактериях (сине-зеленых водорослях), показали, что с повышением температуры на 10 ºС суточный период их циклических метаболических процессов меняется всего на 10–15%, тогда как по законам химической кинетики это изменение должно быть больше почти на порядок! Этот факт стал настоящим вызовом, так как все биохимические реакции должны подчиняться правилам химической кинетики.

Сейчас ученые сошлись во мнении, что ритм циклических процессов остается достаточно стабильным потому, что суточный цикл определяется не одним геном. В 1994 г. Янг открыл у дрозофилы ген Tim, кодирующий белок, участвующий в регуляции уровня белка PER по принципу обратной связи. При повышении температуры возрастает наработка не только белков, участвующих в формировании циркадного цикла, но и других белков, которые его тормозят, в результате работа биологических часов не сбивается.

У млекопитающих открыто целое семейство генов циркадных генов – Bmal1, Clock, Cry1-2, Per1-3, механизм работы которых подчиняется принципу обратной связи. Белки BMAL1 и CLOCK активируют гены Per и Cry, в результате чего синтезируются белки PER и CRY. Когда этих белков становится много, они начинают подавлять активность BMAL1 и CLOCK, тем самым снижая свой синтез. Когда количество белков PER и CRY снижается до определенного уровня, вновь активируются BMAL1 и CLOCK. Цикл продолжается

Базовые механизмы циркадных ритмов на сегодня достаточно изучены, хотя многие детали так и остались необъясненными. Так, непонятно, каким образом в одном организме могут одновременно сосуществовать несколько «часов»: как реализуются процессы, идущие с разным периодом? Например, в экспериментах, когда люди жили в помещениях или в пещере, не получая информации о смене дня и ночи, их температура тела, секреция стероидных гормонов и другие физиологические параметры циклировали с периодом около 25 ч. При этом периоды сна и бодрствования могли варьировать от 15 до 60 ч. (Wever, 1975).

Изучение циркадных ритмов важно и для понимания функционирования организма в экстремальных условиях, например, в Арктике, где в условиях полярного дня и ночи не действуют естественные факторы синхронизации суточных ритмов. Существуют убедительные данные, что при долгом пребывании в таких условиях у человека существенно изменяются суточные ритмы целого ряда функций (Мошкин, 1984). Сейчас мы осознаем, что этот фактор может заметно влиять на здоровье человека, и знания о молекулярной основе циркадных ритмов должны помочь при определении вариантов генов, которые будут «полезны» при работе в полярных условиях.

Но знания о биоритмах важны не только для полярников. Циркадные ритмы влияют на наши обменные процессы, работу иммунной системы и процесс воспаления, на кровяное давление, температуру тела, функции мозга и многое другое. От времени суток зависит эффективность некоторых лекарств и их побочные эффекты. При вынужденном несоответствии внутренних и внешних «часов» (например, из-за широтного перелета или работы в ночную смену) могут наблюдаться разнообразные дисфункции организма, от расстройства желудочно-кишечного тракта и сердечно-сосудистой системы до депрессии, при этом также повышается риск развития онкологических заболеваний.

Литература

PITTENDRIGH C.S. Circadian rhythms and the circadian organization of living systems.Cold Spring Harb Symp Quant Biol. 1960;25:159-84.

Wever, R. (1975). "The circadian multi-oscillator system of man". Int J Chronobiol. 3 (1): 19–55.

Мошкин М.П. Влияние естественного светового режима на биоритмы полярников // Физиология человека. 1984, 10(1): 126-129.

Подготовила Татьяна Морозова

Лауреатов Нобелевской премии по физиологии и медицине за 2017 год. Ими стали американские исследователи Джеффри Холл, Майкл Росбаш и Майкл Янг. Премия будет вручена «за открытие молекулярных механизмов контроля циркадных ритмов». Что же это за ритмы и какие механизмы ими управляют? Почему это настолько важно?

- Наступает ночь. Город засыпает, просыпается мафия.

То, что активность живых существ зависит от времени суток, было известно испокон веков. Все знают, что коровы пасутся днем, петухи кричат утром, а котята хватают спящих людей за пятки в два часа ночи. У каждого вида живых существ, от одноклеточных цианобактерий до огромных многотонных китов и вековых деревьев, периоды активности сменяются периодами отдыха, в определенное время дня выбрасываются те или иные гормоны, листья сворачиваются и разворачиваются как по часам. Но что это за часы? Какова их природа? Немало копий было сломано за те 300 лет, что люди пытались ответить на эти вопросы. Нобелевскую премию в этом году заслуженно дали людям, которые поставили если не точку, то как минимум жирную черту, разделившую науку о механизмах, обусловливающих циркадные ритмы, на «до» и «после».

История вопроса

Наиболее логичным ответом на вопрос, откуда берется эта периодическая активность, представляются солнечные часы. Мол, солнце встает, активность «дневных» видов повышается, а «ночных» снижется. Основным регулятором является освещенность, а также сопутствующие ей факторы - рост и падение температуры, смена направления ветра и все в том же духе. Эта парадигма активно применялась еще древними римлянами , день которых начинался в момент восхода солнца над горизонтом, а ночь - в момент захода. Так как и день, и ночь состояли из 12 часов, длина часа у римлян зависела как от того, ночной это час или дневной, так и от времени года.

Первым проверить, действительно ли именно внешние факторы определяют активность живых существ, взялся французский астроном Жан-Жак де Меро в начале 18 века. В качестве модельного организма он использовал мимозу, которая очень явно реагирует на смену дня и ночи - в светлое время ее маленькие нежные листочки развернуты к солнцу, а в темное сложены и опущены вниз. Де Меро поместил мимозу в темный ящик и с удивлением наблюдал, как еще около недели она своевременно сворачивала и разворачивала листочки несмотря на отсутствие стимуляции светом (рис. 1). На основе этого он сделал предположение, что ритм этого процесса задается изнутри, а не снаружи.

Рисунок 1. Опыт Де Меро. Астроном заметил, что мимоза сохраняет способность утром разворачивать листочки, а ночью сворачивать их обратно даже без воздействия солнечного света.

Как чаще всего происходит в таких случаях, новое явление до поры до времени было забыто, а в начале 20 века переоткрыто. На протяжении многих десятилетий велись жаркие дебаты между идеологами «внутренних часов» и «факторов среды», пока в 1971 году не была опубликована прорывная статья калифорнийских ученых, где они показали, что циркадные ритмы имеют генетическую природу. Идея нетривиальная, так как даже сторонники «внутренних часов» считали, что если они и имеют генетическую природу, то число задействованных генов должно быть очень велико, и повлиять мутациями на этот признак значимо не выйдет.

В качестве модели использовали плодовых мушек дрозофил. Время было дикое, амплификаторы и секвенаторы еще не изобрели, а вместо пипеток в лабораториях были каменные топоры. Экспериментаторы лили на яйца мушек мутагены, вызывая изменения в случайных генах. И сумели получить три разных по «ритмике» линии дрозофил. Первая линия имела циркадный ритм продолжительностью 28 часов, вторая - 19 часов, а в третьей обычно ритмические параметры вообще не подчинялись никакому заметному циклу (рис. 2). Путем долгих изысканий методами классической генетики исследователи смогли локализовать ответственный за изменения участок. Это оказался ген в половой Х-хромосоме, который был назван period . На тот момент, в отсутствие молекулярных методов, двигаться дальше было невозможно. Что это за ген и как он работает - осталось загадкой.

Рисунок 2. Мутантные дрозофилы с нарушенными циркадными ритмами. Различные мутации в гене period могут изменить продолжительность циркадного цикла в бóльшую или меньшую сторону или даже полностью его уничтожить.

За что же дали Нобеля?

В середине 1980-х, когда каменные топоры уже отошли на второй план, а в лабораториях биологов робко обживались первые амплификаторы, в США над проблемой циркадных ритмов работали две группы. Первая под руководством Джеффри Холла и Майкла Росбаша трудилась в Брандейском университете в Массачусетсе, вторая под руководством Майкла Янга - в университете Рокфеллера в Нью-Йорке. Примерно одновременно эти группы смогли клонировать ген period , секвенировать и изучить его последовательность. Первые данные о структуре гена и кодируемого им белка не дали ясного ответа о механизмах его работы, породив множество курьезных теорий.

Непонятно было, прежде всего, на каком уровне действовал этот ген. Бóльшая часть строившихся тогда предположений относила его продукт, получивший название PER, к мембранным белкам, которые либо регулируют доступ в клетку какого-либо действующего вещества извне, либо изменяют характер взаимодействия клеток между собой. Одно было ясно - должен существовать некоторый осциллятор с периодом в 24 часа и его работа должна быть напрямую связана с белком PER.

И этот осциллятор был найден - им оказался, как ни странно, сам белок PER. Холл и Росбаш показали, что в нейронах мухи концентрация этого белка имеет 24-часовую цикличность с пиком около полуночи. Такому же циклу оказалась подвержена мРНК этого белка, однако пик ее концентрации оказался сдвинут на несколько часов раньше по отношению к пику белка (обычно такие пики должны совпадать). Исследователи получили нонсенс-мутантов по этому белку (при этом мРНК синтезируется, а белок - нет) и увидели, что при этом периодические изменения концентрации мРНК пропадают. Вывод последовал незамедлительно - белок PER является ядерным модулятором транскрипции и блокирует собственный синтез (рис. 3а ).

Рисунок 3. В организме действует осциллятор, состоящий из белков, негативно регулирующих экспрессию собственной мРНК. За счет разветвленной системы положительных и отрицательных регуляторов осциллятор имеет период примерно в 24 часа и может подстраивать свою работу под изменения светового дня.

На основе этого вывода предложили гипотезу TTFL (Transcription-Translation Feedback Loop - транскрипционно-трансляционной обратной связи). Согласно этой гипотезе, осциллятор, отвечающий за циркадные ритмы, состоит из одного или нескольких белков, которые контролируют собственную экспрессию при помощи негативной регуляции транскрипции и/или трансляции. Было понятно, что один ген period не способен полностью построить циркадный ритм, ему нужны партнеры.

Этих партнеров обнаружил Майкл Янг. Он выявил ген, названный им timeless , мРНК и продукт которого (белок TIM) также подвергались 24-часовым осцилляциям. Оказалось, что белки PER и TIM могут попасть в ядро только провзаимодействовав друг с другом. Один без другого работать не способен и даже более того - без связи они моментально разрушаются в протеасоме. Вместе же они попадают в ядро и блокируют собственную экспрессию (рис. 3а ).

В дальнейшем обнаружили также и позитивные регуляторы экспрессии этих генов, что еще сильнее усложнило картину. Выявили и взаимосвязи со средовыми факторами. Те, кто пересекал в ходе путешествий множество часовых поясов, знают, что при этом организм поначалу не может подстроиться под новый световой день, но через несколько дней циркадные ритмы синхронизируются с реальностью, и жизнь снова становится прекрасна, а сон крепок.

За такую настройку, как оказалось, отвечает целый набор белков-регуляторов, воздействующих на все тот же осциллятор PER-TIM (рис. 3б ). Например, Янг обнаружил белок CRY, который активируется в ответ на повышение внешней освещенности, связывает TIM и отправляет его на деградацию. Таким образом, раннее или позднее утро меняют характеристики пика TIM, что в свою очередь меняет профиль экспрессии PER. Через несколько дней циркадный ритм стабилизируется в новом положении.

Все эти данные и успешно подтвержденные гипотезы довольно сильно изменили наше понимание циркадных ритмов. Теория о внутреннем осцилляторе была однозначно подтверждена благодаря усилиям Холла, Росбаша и Янга, за что они вполне заслуженно получили Нобелевскую премию . Но исследования этой интересной области все еще продолжаются.

Не мухами едиными...

Мухи - это, конечно, хорошо, но что там у млекопитающих вообще и у человека в частности? У нас всё оказалось похоже в общем, но отлично в деталях. Циркадные ритмы у млекопитающих делятся на центральные и периферические. Центральным регулятором выступает супрахиазматическое ядро гипоталамуса в головном мозге . При изменении ритма освещенности оно первое перестраивает свой цикл активности системы белков PER. Под контролем этого ядра идет выделение мелатонина (гормона сна) в эпифизе, через который оно регулирует циркадные ритмы в остальных тканях организма.

На белки циркадного каскада оказались завязаны многие физиологические функции клеток и тканей (рис. 4). Например, утром инсулиновый ответ поджелудочной железы на потребление углеводов более яркий, чем вечером. И это даже не получается объяснить ночной «голодовкой» - животные, которым 24 часа с постоянной скоростью вводили в кровь глюкозу, имели наименьший ее уровень (и наибольший уровень инсулина) утром. Аналогично меняется усвоение жиров и белков. Таким образом, совет «не есть после 18», столь частый в фитнес-журналах, оказывается, имеет под собой физиологическое обоснование .

Рисунок 4. Многие аспекты функционирования человеческого организма зависят от времени суток и контролируются циркадными ритмами.

Циркадные ритмы вообще влияют почти на все области нашей физиологии. От времени суток зависят наша работоспособность, уровни почти всех основных гормонов, заболевания и так далее. Разумеется, уже есть группы, осваивающие гранты в вопросах связи нарушенных циркадных ритмов и рака, нейродегенеративных и сердечно-сосудистых заболеваний и других интересных тем.

Очень перспективными являются исследования связи циркадных ритмов и старения. Известно, что супрахиазматическое ядро с возрастом деградирует и к старости работает уже не так регулярно. Старые люди достоверно хуже адаптируются к смене часовых поясов, хуже переносят вынужденное бодрствование и восстанавливаются во время сна. На грызунах исследователи показали, что нарушение генов циркадных ритмов ведет к значительному снижению продолжительности их жизни и, что довольно интересно, к более раннему появлению «старческих» заболеваний .

Дальнейшее развитие

В настоящий момент циркадная биология развивается бешеными темпами. Изучают варианты фармакологического воздействия на циркадные ритмы, особенно нарушенные вследствие перелетов, возраста или заболеваний. В аптеках уже можно купить препараты мелатонина для путешественников.

2 октября 2017 в 17:08

Нобелевская премия по физиологии и медицине 2017 года: молекулярный механизм биологических часов

  • Научно-популярное ,
  • Биотехнологии ,
  • Здоровье гика

2 октября 2017 года Нобелевский комитет огласил имена лауреатов Нобелевской премии 2017 года по физиологии и медицине. 9 млн шведских крон разделят поровну американские биологи Джеффри Холл (Jeffrey C. Hall), Майкл Розбаш (Michael Rosbash) и Майкл Янг (Michael W. Young) за своё открытие молекулярного механизма работы биологических часов, то есть бесконечно зацикленного циркадного ритма жизнедеятельности организмов, в том числе человека.

За миллионы лет жизнь адаптировалась к вращению планеты. Давным-давно известно, что у нас есть внутренние биологические часы, которые предвосхищают и адаптируются ко времени суток. Вечером хочется заснуть, а утром - проснуться. Гормоны выбрасываются в кровь строго по расписанию, а способности/поведение человека - координация, скорость реакции - тоже зависят от времени дня. Но как работают эти внутренние часы?

Открытие биологических часов приписывают французскому астроному Жан-Жаку де Мерану, который в 18 веке обратил внимание, что листья мимозы раскрываются к Солнцу днём и закрываются ночью. Он задался вопросом, как будет вести себя растение, если поместить его в кромешную темноту. Оказалось, что даже в темноте мимоза следовала плану - у неё как будто были внутренние часы.


Позже такие биоритмы нашли у других растений, животных и человека. Практически все живые организмы на планете реагируют на Солнце: циркадный ритм намертво встроен в земную жизнь, в метаболизм всего живого на планете. Но каким образом работает данный механизм - оставалось загадкой.

Нобелевские лауреаты изолировали ген, который контролирует дневной биологический ритм, у мух-дрозофил (у человека и мухи немало общих генов в силу наличия общих предков). Своё первое открытие они сделали 1984 году. Открытый ген назвали period .

Ген period кодирует протеин PER, который накапливается в клетках ночью и разрушается в течение дня. Концентрация белка PER изменяется по 24-часовому графику в соответствии с циркадным ритмом.


Затем они идентифицировали дополнительные компоненты белка и полностью раскрыли самодостаточный внутриклеточный механизм циркадного ритма - в этой уникальной реакции белок PER блокирует активность гена period , то есть PER блокирует синтез самого себя, но постепенно разрушается в течение дня (см. схему вверху). Это самодостаточный бесконечно зацикленный механизм. Он работает по такому же принципу в других многоклеточных организмах.

После открытия гена, соответствующего протеина и общего механизма работы внутренних часов не хватало ещё нескольких кусочков головоломки. Учёные знали, что белок PER ночью накапливается в ядре клетки. Они знали также, что соответствующая mRNA производится в цитоплазме. Непонятно было, как белок попадает из цитоплазмы в ядро клетки. В 1994 году Майкл Янг открыл ещё один ген timeless , который кодирует белок TIM, тоже необходимый для нормальной работы внутренних часов. Он доказал, что если TIM присоединяется к PER, то пара протеинов способна внедриться в ядро клетки, где они и блокируют активность гена period , таким образом замыкая бесконечный цикл производства белка PER.


Выяснилось, что этот механизм с изысканной точностью адаптирует наши внутренние часы ко времени суток. Он регулирует разные критические функции организма, в том числе поведение человека, уровни гормонов, сон, температуру тела и метаболизм. Человек плохо себя чувствует, если наблюдается временное несоответствие между внешними условиями и его внутренними биологическими часами, например, при путешествии на большие расстояния в разные часовые пояса. Есть также доказательства, что хроническое несоответствие образа жизни и внутренних часов связано с повышенным риском возникновения различных заболеваний, в том числе диабета, ожирения, рака и сердечно-сосудистых заболеваний.

Позже Майкл Янг идентифицировал ещё один ген doubletime , кодирующий белок DBT, который замедляет накопление белка PER в клетке и позволяет организму более точно подстраиваться под 24-часовые сутки.

В последующие годы нынешние нобелевские лауреаты более подробно осветили участие в циркадном ритме других молекулярных компонентов, они нашли дополнительные протеины, которые участвуют в активации гена period , а также выяснили механизмы, как свет помогает синхронизировать биологические часы с внешними условиями среды.


Слева направо: Майкл Розбаш, Майкл Янг, Джеффри Холл

Исследование механизма внутренних часов ещё далеко не закончено. Мы знаем только основные части механизма. Циркадная биология - изучение внутренних часов и циркадного ритма - выделилась в отдельное бурно развивающееся направление исследований. И всё это произошло благодаря трём нынешним лауреатам Нобелевской премии.

Специалисты уже несколько лет обсуждали, что за молекулярный механизм циркадных ритмов дадут Нобелевскую премию - и вот это событие наконец произошло.

В Стокгольме объявили лауреатов Нобелевской премии в области физиологии и медицины. На этот раз премии удостоились Джеффри Холл, Майкл Росбаш, Майкл Янг (Jeffrey Hall, Michael Rosbash, Michael Young) за открытие молекулярных механизмов, лежащих в основе циркадных ритмов - суточных колебаний различных параметров организма, характерных практически для всех живых существ. Прямая трансляция объявления победителя велась на сайте Нобелевского комитета. Подробнее о работе лауреатов можно узнать в пресс-релизе Нобелевского комитета.

Исследователи независимо друг от друга открыли на плодовой мушке Drosophila melanogaster ген и белок period , концентрация которого колеблется с периодичностью 24 часа и определяет работу «биологических часов» животного.

Циркадные ритмы (от латинских слов circa и diem , что переводится примерно как «в течение дня»), которые чаще называют биологическими часами, обнаружены у бактерий, грибов, растений и животных и представляют собой биохимический осциллятор, т.е. регулярную колебательную систему. Биологические часы регулируют не только чередование сна и бодрствования, но и пищевое поведение, а у млекопитающих - кровяное давление и концентрацию гормонов (в частности, кортизола и мелатонина). Несмотря на их «внутреннюю» природу, активность часов регулируется внешними факторами, главным из которых является свет.

Впервые мутации, нарушающие циркадные ритмы (clock mutations), были обнаружены Рональдом Конопкой и Сеймуром Бензером - их публикация, описывающая мух с нарушенным режимом вышла в 1971 году (оба исследователя уже умерли, а посмертно премию не вручают). Ученые дали соответствующее название (period) локусу, в котором были сосредоточены мутации.

Более основательное изучение биологических часов на молекулярном уровне началось в 80х годах в лаборатории Янга в университете Рокфеллера и в университете Брандейса, в котором работали Холл и Росбаш. Нынешние лауреаты Нобелевской премии независимо друг от друга определили координаты гена period и его нуклеотидную последовательность.

Холл и Ройбаш смогли идентифицировать продукт гена period - белок PER. Ночью этот белок накапливается, а в течение дня деградирует. Колебания концентрации белка PER соответствовали циркадным ритмам мух. Оказалось, что PER регулирует экспрессию собственного гена, однако для этого ему необходим партнер - белок TIM, кодируемый геном timeless . Майкл Янг в своей работе идентифицировал этот ген и показал, как комплекс белков PER и TIM попадает в ядро и блокирует активность гена period.

Всего за последующие 30 лет с момента идентификации гена period на дрозофиле было открыто десять генов, работа которых полностью определяет циркадные ритмы. Шесть из десяти генов были найдены в лаборатории Янга в университете Рокфеллера. Там же было показано, что почти семь процентов генов в мозге дрозофилы экспрессируются согласно колебаниям циркадного ритма.

Нобелевский комитет выбрал победителей из списка кандидатов, включающего 361 заслуженного ученого. По прогнозам журналистов и агентства Clarivate Analytics , которое предсказывает лауреатов на основании индекса цитируемости их научных работ, премию в этом году могли бы вручить за изучение механизмов развития рака, либо за разработки в области иммуно-онкологии - открытия, позволившие создать препараты для лечения рака на основе антител. Однако предсказатели снова ошиблись. Основанием для подобного прогноза стало предположение, что Нобелевский комитет должен чередовать премии за фундаментальные открытия с премиями за практические разработки.

Дарья Спасская

Лауреаты Нобелевской премии 2017 года по физиологии и медицине - американцы Майкл Янг, Джеффри Холл и Майкл Росбаш - получили наград у "за открытие молекулярных механизмов, управляющих циркадным ритмом".

Вместе с редакцией научно-популярного портала "Чердак" разобрались, что это за механизмы, как они работают и зачем клетке знать, который час.

Что такое циркадный ритм?

За четыре с лишним миллиарда лет, которые существует Земля, условия жизни на ней постоянно менялись. Но одно практически всегда оставалось неизменным - 24-часовые сутки, смена дня и ночи, вызванная вращением планеты вокруг своей оси. За это время земная жизнь приспособилась к закатам и рассветам и обзавелась собственными внутренними часами. Этим циркадным (от лат. circa — "вокруг, примерно, около" и dies — "день") ритмам безжалостно подчинены очень многие процессы в организме: помимо сна и бодрствования, это, например, обмен веществ, гормональный уровень, температура тела и даже (опосредованно) поведение.

О том, как важны для нас естественные "внутренние часы", говорят многие исследования. Например, искусственное продление светового дня может вызывать ожирение и связанные с ним заболевания (вроде диабета). В разное время суток организм по-разному подвержен инфекциям: биологические часы животных влияют на способность вирусов к репликации и распространению. С циркадными ритмами может быть связано даже восприятие цветов - это показали на примере того самого платья, из-за которого в 2015 году чуть не разругался интернет.

За что именно вручили премию в 2017 году?

Александра Пучкова, старший научный сотрудник лаборатории нейробиологии сна и бодрствования Института высшей нервной деятельности и нейрофизиологии РАН, рассказала, что лауреаты 2017 года обнаружили "клеточные часы" у мушек-дрозофил. Уже потом ученые выяснили, что этот часовой механизм довольно универсален - аналогичным способом смена дня и ночи закреплена на генетическом уровне и у других животных и человека.

Впервые ген, влияющий на циркадный ритм, идентифицировали еще в 70-е годы. Тогда ученые назвали его period. Двое сегодняшних лауреатов, Джеффри Холл и Майкл Росбаш, в 1984 году сумели изолировать этот ген. Затем они показали, что белок PER, кодирующий ген, накапливается ночью и разрушается днем.

"[Лауреаты] на мушках-дрозофилах выяснили, что есть один ген. Потом оказалось, что этих генов на самом деле много, они регулируют друг друга, и если их изменять, то этот период может стать больше или меньше 24-х часов, а если его сломать, то он [ген ] вообще исчезнет. А потом выяснили, что очень похожий механизм есть у человека… Они показали, как вся эта машинка работает", — пояснила Александра Пучкова.

Научный сотрудник лаборатории генетики Института биологии Карельского научного центра РАН Ирина Курбатова не удивлена, что премию дали именно за эти работы - по ее словам, это крайне перспективная область научных исследований, непосредственно связанная как с фундаментальной медициной, так и с медицинской практикой.

Что дальше?

Интересно, что "часы", найденные Холлом, Росбашем и Янгом, работают во всех клетках, имеющих ядро. Именно так они вмешиваются во все биологические процессы, которыми интересуется новая область науки, хронобиология.

Хронобиологи вместе с сомнологами (специалистами по сну) и другими учеными пытаются выяснить, как можно повлиять на перестройку "внутренних часов", которая, например, происходит, когда вы осуществляете перелет в другой часовой пояс или работаете в ночную смену. Как поясняют ученые, химические "часы" в нашем организме умеют воспринимать внешние сигналы — в первую очередь свет. А это значит, что с помощью светотерапии можно будет лечить депрессию или сезонное аффективное расстройство, вызванное неестественно коротким световым днем.

Помимо прочего, циракадные ритмы регулируют ритм артериального давления, и если их работа нарушена, у человека возникает повышенный риск сердечно-сосудистых патологий.

Так что исследования нобелевских лауреатов подвели теоретическую основу под целую область медицины.