Дыхание растений. Влияние освещенности на рост и развитие растений

В растениях обнаружено более 70 химических элементов, при этом достоверно установлено, что 17 из них абсолютно необходимы для нормального роста, развития и плодоношения. Первые три элемента: водород (H), кислород (O), углерод (C), растения берут из воздуха и воды. Другие 14 элементов: азот (N), фосфор (P), калий (K), кальций (Ca), хлор (Cl), магний (Mg), сера (S), железо (Fe), марганец (Mn), цинк (Zn), медь (Cu), бор(B), молибден (Mo), кобальт (Co) растения берут из почвы.

Химические элементы, находящиеся в почве принято разделять на две группы обусловленные количеством потребления их растениями.

  • Макроэлементы: азот (N), фосфор (P), калий (K), кальций (Ca), магний (Mg) и сера (S).
  • Микроэлементы: железо (Fe), хлор (Cl), марганец (Mn), цинк (Zn), медь (Cu), бор(B), молибден (Mo), кобальт (Co).

Железо и хлор по количествам, поглощаемым растениями, занимают промежуточное положение между макро- и микроэлементами, однако их чаще относят к микроэлементам.

Микроэлементы потребляются растениями в количествах несколько тысяч раз меньших, чем макроэлементы, отсюда и их название.

Азот входит в состав белков, хлорофилла и является основой всех жизненных процессов. Растениям требуется довольно много азота. Каждая клетка должна в изобилии получать азотные соединения. Азот в растениях очень подвижен и способен быстро перемещаться в то место где в его присутствии возникает необходимость. Как правило, это верхние части растений, где происходит наиболее интенсивный рост. Визуально это перемещение можно наблюдать при недостаточном снабжении растения азотом, при котором нижние самые старые листья начинают равномерно окрашиваться в жёлтый цвет, а впоследствии отмирают, что и свидетельствует о перемещении из них азота в верхние части растения.

Фосфор, как и азот необходим для роста всех частей растения. Он входит в состав хромосом, находящихся в ядрах клеток. Именно хромосомы ответственны за деление клеток их рост и передачу наследственности. Фосфор способствует прорастанию семени, стимулирует формирование корня и рост растения на ранних стадиях развития. Подсчитано, что 50% всего необходимого фосфора растение поглощает к тому времени, когда оно достигает всего лишь 20% своей высоты. Это говорит о необходимости контроля поступления фосфора при выращивании рассады. Если она не получит фосфор в достаточном количестве, то растениям будет нанесён ущерб, который почти невозможно устранить впоследствии даже если рассада при пересадке попадёт в плодородную почву не имеющую недостатка в фосфоре.

Калий (K) также как и азот требуется растениям непрерывно и в больших количествах. Потребность в калии возрастает пропорционально росту культуры, поэтому снабжение этим элементом должно быть обильным в период наиболее интенсивного роста. Калий не входит в состав органических веществ, но играет важную роль в их образовании. Многосторонние функции калия в растениях находят своё выражение в том, что он повышает устойчивость растений к болезням, увеличивает холодостойкость, препятствует полеганию злаковых культур, улучшает вкусовые качества форму и цвет овощей. Как и азот, калий интенсивно перемещается по растению и присутствует во всех его частях. Калий может поглощаться в несколько избыточном количестве, что не вредит растениям.

Кальций (Ca) – необходимый элемент питания, который поглощается растениями в количестве, часто превосходящем количество фосфора, но меньше чем азота или калия. Он участвует в создании важного соединения пектата, межклеточного вещества которое скрепляет клетки между собой и способствует их удержанию вместе. Кальций улучшает растворимость многих соединений, в почве делая их доступными для растений, стимулирует активность клубеньковых бактерий, которые фиксируют свободный азот из воздуха. Принято считать, что кальций имеет прямое отношение к развитию корневой системы, так как корни не способны расти в поисках кальция, а должны с ним иметь непосредственный контакт.

Хлор (Cl) может накапливаться в растениях в значительном количестве, так как существует множество источников поступления его в растения. Поэтому длительное время, проводя исследования, на него обращали внимание как на элемент, присутствие которого в больших количествах нежелательно для растений. И это действительно так. Некоторые овощные культуры плохо переносят даже умеренное количество хлора поступающего в растения. Это в свою очередь побудило некоторых производителей сложных удобрительных смесей подчёркивать в аннотациях, что их удобрения не содержат в своём составе хлор. Однако некоторое время спустя было доказано, что растения без хлора не могут существовать, и он приобрёл статус абсолютно необходимого элемента в питании растений.

Углерод – это краеугольный камень строительной структуры растений. Он входит в состав всех жизненно важных для растений соединений. Растения получают его из углекислого газа атмосферы. Под действием солнечной энергии на зёрна хлорофилла в клетках, растения строят свои удивительные структуры основой которых, всегда является углерод.

Магний (Mg) является строительным материалом для зелёного пигмента растений – хлорофилла, играет важную роль в фотосинтезе, переносе энергии в виде сахара. В растении магний также как азот и калий постоянно находится в движении, перемещаясь из тканей старых листьев в молодые, где происходит интенсивный рост. Красота зелёного мира растительности обязана магнию.

Сера (S) входит в состав белков, некоторых растительных масел и витаминов, участвует в белковом обмене, в реакциях окисления и восстановления и многих других, жизненно важных реакциях в растениях. Сера потребляется растениями в тех же количествах что и фосфор. Быстро распространяется внутри растения.

Железо (Fe) необходимо для образования хлорофилла, для нормального протекания окислительных процессов и дыхания растений. Рассматривая функции железа в растениях можно выделить присущее ему свойство каталитического ускорения образования хлорофилла что отличает его от других элементов участвующих в том же процессе.

Марганец (Mn) также как и железо участвует в синтезе хлорофилла. Самая высокая концентрация марганца наблюдается в тех тканях растения, которые содержат хлорофилл.

Медь (Cu) в растениях выполняет много функций. Её действие сложно и многообразно. Все исследования показывают, что медь имеет значение для расщепления белков в процессах роста растений. Замечено так же что концентрация меди в корнях выше, чем в листьях и в других тканях. Это даёт основание предположить важную роль меди в обмене веществ корневой системы растения.

Цинк (Zn) необходим для образования органических веществ, называемых ауксинами, которые вызывают удлинение стеблей и представляют собой стимуляторы роста растений.

Бор (B) в растениях воздействует на процессы цветения и плодоношения, прорастания пыльцы и деления клеток, на азотный обмен, на углеводный обмен, на активное поглощение солей, передвижение и деятельность гормонов, метаболизм пектиновых веществ, на водный обмен и на функции воды в растениях. Бор малоподвижен в растениях и практически не переходит из старых тканей во вновь образующиеся ткани. Если бор хорошо доступен, многие виды растений будут поглощать его гораздо в больших количествах, чем необходимо. Как правило, растения хорошо выносят широкий диапазон концентраций многих элементов питания, но это не относится к бору. Грань между недостатком и избытком бора очень узкая, и любой избыток бора токсичен.

Молибден (Mo) играет очень важную роль в процессах превращения одних форм азота в другие. Он входит в состав ферментов, превращающих нитраты в аммиак, который затем используется на построение белков. Если растения не получают молибден в достаточных количествах то это приводит к нарушению азотного обмена и в растениях накапливается большое количество нитратов.

Как видно из описания функций химических элементов ни один из них не встраивается в структуру растения, а лишь является строительным материалом, который растения берут из почвы или воздуха. Последние проявляют определённую избирательность, потребляя элементы по мере надобности, даже если все элементы находятся в почве с некоторым избытком.

Следует понимать, что ни один из выше перечисленных элементов не может быть заменён каким-либо другим. Это означает, что растение не сможет существовать при полном отсутствии либо острой нехватке хотя бы одного из семнадцати абсолютно необходимых элементов.

Иногда овощеводы концентрируют своё внимание исключительно на основных элементах питания, подкармливая растения мочевиной, суперфосфатом, хлористым калием, или комплексными удобрениями. Так поступая, они закладывают проблему, которая через годы обязательно проявится в виде дефицита нескольких абсолютно необходимых элементов питания. Что приведёт к отрицательным последствиям. В первые годы такой практики урожаи будут высокими. Однако почва уже начнёт постепенно истощаться по остальным питательным элементам, баланс питательных веществ нарушается, овощи обогащаются нитратами, и наконец, вслед за резким ухудшением качества, начинается снижение урожаев.

Именно такая практика использования только основных элементов и её отрицательные последствия отвращают многих от минеральных удобрений, хотя очевидно, что проблема заложена не в удобрениях, а в способах их применения.
Правильное питание растений – основное условие получения высокого и качественного урожая.

Вариант 7

А1. Клевер красный, занимающий определенный ареал, представляет собой уровень организации живой природы

1) организменный

2) биоценотический

3) биосферный

4) популяционно-видовой

А2. Нуклеиновые кислоты, в отличие от крахмала, содержат атомы

1) азота и фосфора

2) водорода и кислорода

3) калия и кальция

4) серы и магния

A3. Наследственная информация в клетках грибов заключена в

А4. Новые соматические клетки в многоклеточном организме животного образуются в результате

3) овогенеза

4) сперматогенеза

А5. Прокариоты — это организмы,

1) клетки которых не имеют оформленного ядра

3) состоящие из одинаковых клеток и не имеющие тканей

4) которые не имеют клеточного строения

А6. У большинства животных с прямым развитием из яйца появляется организм,

1) по строению похожий на родителей

2) значительно отличающийся от родителей

3) способный к автотрофному питанию

А7. Парные гены, расположенные в гомологичных хромосомах и определяющие окраску цветков гороха, называют

1) сцепленными

2) рецессивными

3) доминантными

4) аллельными

А8. Какая часть особей с рецессивным признаком проявится в первом поколении при скрещивании двух гетерозиготных по данному признаку родителей?

А9. Явление полиплоидии обусловлено

1) поворотом участка хромосомы на 180°

2) кратным увеличением наборов хромосом

3) наличием в хромосоме двух хроматид

4) уменьшением числа отдельных хромосом

А10. Назовите признак, характерный только для царства Бактерий.

1) имеют клеточное строение

2) дышат, питаются, размножаются

3) в клетках есть оформленное ядро

4) в клетках отсутствует оформленное ядро

A ll. На развитие растений используется энергия, которую организм получает в результате

1) роста и деления клеток

2) транспорта воды и минеральных веществ

3) расщепления органических веществ при дыхании

4) поглощения веществ из окружающей среды

А12. Растения, у которых на корнях развиваются клубеньковые бактерии, относят к семейству

1) розоцветных

2) бобовых

3) капустных

4) лилейных

А13. Клетка многоклеточного животного, в отличие от клетки простейшего,

1) покрыта оболочкой из клетчатки

2) выполняет все функции организма

3) выполняет определенную функцию

4) представляет собой самостоятельный организм

А14. Кожное и лёгочное дыхание характерно для

2) крокодилов

4) лягушек

1) гортани

2) носоглотке

4) ротовой полости

А16. Образование мочи у человека происходит в

1) мочеточниках

2) мочевом пузыре

3) нефронах

4) почечной вене

А17. В процессе энергетического обмена

1) из глицерина и жирных кислот образуются жиры

2) синтезируются молекулы АТФ

3) синтезируются неорганические вещества

4) из аминокислот образуются белки

А18. Пример рефлекса, приобретённого в течение жизни, —

1) сужение зрачка на ярком свету

2) выделение слюны у собаки на запах мяса

3) чихание при попадании пыли в носоглотку

4) рвотный рефлекс у человека

А19. При вывихе в суставе

1) повреждается суставный хрящ

2) нарушается целостность мышечной ткани

3) повреждается надкостница в головках костей, образующих сустав

4) суставная головка выходит из суставной впадины

А20. Сохранению признаков вида в природе способствует

1) изменчивость

2) мутагенез

3) метаболизм

4) наследственность

А21. Материалом для естественного отбора служит изменчивость

1) сезонная

2) мутационная

3) определённая

4) фенотипическая

А22. К эмбриологическим доказательствам эволюции относят

1) клеточное строение организмов

2) наличие сходных систем органов у позвоночных

3) сходство зародышей позвоночных животных

4) сходство процессов жизнедеятельности у животных

А23. Доказательством единства человеческих рас является

1) одинаковый набор хромосом

2) приспособленность к жизни в различных климатических условиях

3) наличие атавизмов

4) наличие рудиментов

А24. Увеличение продолжительности светового дня, вызывающее сезонные изменения у организмов, относят к факторам

1) антропогенным

2) биотическим

3) абиотическим

4) ограничивающим

А25. В биогеоценозе заливного луга к редуцентам относят

1) злаки, осоки

2) бактерии и грибы

3) мышевидных грызунов

4) насекомых, питающихся растениями

А26. Обмен химическими элементами между организмами и неорганической средой, различные стадии которого происходят внутри экосистемы, называют

1) круговоротом веществ

2) экологической пирамидой

3) пищевыми цепями

4) саморегуляцией

А27. Полипептидная цепь, свернутая в клубок, — это структура белка

1) первичная 3) третичная

2) вторичная 4) четвертичная

А28. В ходе пластического обмена происходит

1) окисление глюкозы

2) окисление липидов

3) синтез неорганических веществ

4) синтез органических веществ

А29. Генотип потомства является точной копией генотипа родителей при

1) половом размножении

2) размножении семенами

3) вегетативном размножении

4) оплодотворении яйцеклетки

АЗО. Проявления модификационной изменчивости признака зависят от генотипа, поэтому её пределы ограничены

1) нормой реакции 3) случайными мутациями

2) условиями среды 4) конвергенцией

А31. Гетерозис выражается в

1) превосходстве гибридов по ряду свойств над родительскими формами

2) подавлении действия генов одного из родителей генами другого родителя

3) кратном увеличении числа хромосом

4) наследовании признаков родительских форм

А32. Растения семейства лилейных можно узнать по строению

1) цветков пятичленного типа, напоминающих строение мотылька

2) вегетативных органов: стебля (соломина), сидячих листьев, видоизменённого корня

3) цветков трёхчленного типа с простым околоцветником и наличию видоизменённых подземных побегов

4) вегетативных органов: стебля (соломина), видоизмененных подземных побегов

АЗЗ. Клетки соединительной ткани

1) многоядерные, имеют поперечную исчерченность

2) располагаются рыхло, между ними много межклеточного вещества

3) мелкие, веретенообразной формы, имеют миофибриллы

4) плотно прилегают друг к другу

А34. К рецепторам сумеречного зрения относят

1) палочки

2) хрусталик

3) колбочки

4) стекловидное тело

А35. Дрейф генов — это

1) случайное изменение частот встречаемости их аллелей в популяции

2) перемещение особей из одной популяции в другую

4) результат естественного отбора

А36. Хвощ, в клетках которого накапливается кремний, выполняет в биосфере функцию

1) биохимическую

2) газовую

3) концентрационную

4) окислительно-восстановительную

В 1. Клетки эукариотных организмов, в отличие от прокариотных, имеют

1) цитоплазму

2) ядро, покрытое оболочкой

3) молекулы ДНК

4) митохондрии

5) плотную оболочку

6) эндоплазматическую сеть

В 2. Двигательные нейроны

1) воспринимают возбуждение от вставочных нейронов

2) передают возбуждение мышцам

3) передают возбуждение вставочным нейронам

4) передают возбуждение к железам

5) передают возбуждение на чувствительные нейроны

6) воспринимают возбуждение, возникшее в рецепторах

В 3. Какие из перечисленных примеров относят к идиоадаптациям?

1) развитие образовательных тканей у растений

2) наличие ловчих аппаратов у насекомоядных растений

4) появление триплоидного эндосперма у покрытосеменных

5) мелкая, сухая пыльца у ветроопыляемых растений

6) железистые волоски на листьях душистой герани

В4. Установите соответствие между моллюском и средой его обитания.

СРЕДА ОБИТАНИЯ

2) наземно-воздушная

A) обыкновенная беззубка

Б) большой прудовик

B) голый слизень

Г) осьминог

Д) виноградная улитка

В5. Установите соответствие между значением рефлекса и его видом.

ВИД РЕФЛЕКСА

1) безусловный

2) условный

ЗНАЧЕНИЕ РЕФЛЕКСА

A) обеспечивает инстинктивное поведение

Б)обеспечивает приспособление организма к условиям окружающей среды, в которых обитали многие поколения данного вида

B) позволяет приобрести новый опыт, полученный в течение жизни

Г) определяет поведение организма в изменившихся условиях

В6. Установите соответствие между особенностью процесса и его видом.

ВИД ПРОЦЕССА

1) фотосинтез

2) гликолиз

ОСОБЕННОСТЬ ПРОЦЕССА

A) происходит в хлоропластах

Б) состоит из световой и темновой фаз

B) образуется пировиноградная кислота

Г) происходит в цитоплазме

Д) конечный продукт — глюкоза

Е) расщепление глюкозы

В7. Установите последовательность систематических категорий, характерных для царства Растений, начиная с наименьшей.

A) Покрытосеменные

Б) Паслёновые

B) Двудольные

Г) Паслён чёрный Д) Паслён

В8. Установите последовательность жизненного цикла вируса в клетке хозяина.

A) прикрепление вируса своими отростками к оболочке клетки

Б) проникновение ДНК вируса в клетку

B) растворение оболочки клетки в месте прикрепления вируса

Г) синтез вирусных белков

Д) встраивание ДНК вируса в ДНК клетки-хозяина

Е) формирование новых вирусов

С1. Какие органы растений повреждают майские жуки на разных стадиях индивидуального развития?

С2. Найдите ошибки в приведенном тексте, исправьте их. Укажите номера предложений, в которых сделаны ошибки, объясните их.

I. Большое значение в строении и жизнедеятельности организмов имеют белки. 2. Это биополимеры, мономерами которых являются азотистые основания. 3. Белки входят в состав плазматической мембраны. 4. Многие белки выполняют в клетке ферментативную функцию. 5. В молекулах белка зашифрована наследственная информация о признаках организма. 6. Молекулы белка и тРНК входят в состав рибосом.

СЗ. Чем отличается кровеносная система членистоногих от кровеносной системы кольчатых червей? Укажите не менее 3 признаков, которые доказывают эти отличия.

С4. Известно, что агроценозы менее устойчивы, чем биогеоценозы. Укажите не менее 3 признаков, которые доказывают это утверждение.

С5. Почему в редких случаях у отдельных людей появляются атавизмы?

Сб. При скрещивании растения арбуза с длинными полосатыми плодами с растением, имеющим круглые зеленые плоды, в потомстве получили растения с длинными зелеными и круглыми зелеными плодами. При скрещивании такого же арбуза (с длинными полосатыми плодами) с растением, имеющим круглые полосатые плоды, все потомство имело круглые полосатые плоды. Определите доминантные и рецессивные признаки, генотипы всех родительских растений арбуза.

ВЛИЯНИЕ ВНЕШНИХ ФАКТОРОВ НА РОСТ И РАЗВИТИЕ РАСТЕНИЙ

Роменская Екатерина Евгеньевна

Класс 4«А», МБОУ СОШ № 10 г Когалыма

Бурунова Александра Михайловна

научный руководитель, педагог II категории, учитель начальных классов МБОУ «СОШ № 10», г Когалыма

Введение

Представим, что на свете не осталось ни одного растения. Что же тогда случится? То, что некрасиво будет, - это полбеды. А вот то, что без растений мы не сможем жить - это, действительно, очень плохо. Ведь у растений есть один очень важный секрет!

В листьях растений происходят удивительные превращения. Вода, солнечный свет и углекислый газ - тот, который мы выдыхаем, превращаются в кислород и органические вещества. Кислород необходим нам и всем живым существам для дыхания, а органические вещества - для питания. Так что можно сказать, что в растениях находится настоящая химическая лаборатория по производству жизненно необходимых веществ.

Растения используются человеком не только как источник питания, но и как сырье для разных отраслей промышленности: пищевой, текстильной, бумажной, химической и другой.

Так как значение растений очень важно для жизнедеятельности человека, поэтому очень важно, чтобы урожай культурных растений были стабильно высокими. Учитывая все выше сказанное и определив для себя актуальную проблему исследования, мы хотели бы проанализировать какие факторы влияют на рост и развитие растений, а, следовательно, и на увеличение урожая.

Мы поставили перед собой цель - изучение условий прорастания семян растений на примере гороха посевного.

Для реализации цели мы поставили перед собой следующие задачи:

· выяснить морфо-физиологические особенности гороха посевного;

· выяснить, какие условия нужны для роста и развития растения

· узнать новое и интересное из жизни растений.

Совместно с руководителем исследования мы определили предмет и объект исследования.

Объект исследования - горох посевной

Предмет исследования - условия прорастания гороха посевного

В своей гипотезе , предполагаем, что растениям для роста и развития необходимы вода, воздух, оптимальная температура, питательные вещества, свет.

Методы исследования: наблюдение, опыт, анализ, обзор литературных источников.

Теоретическая часть

1.1. Горох посевной - морфо-физиологическая характеристика

ГОРОХ (Pisum ) - однолетнее, самоопыляющееся травянистое растение семейства Бобовые, зерновая бобовая культура (приложение 1 рис. 1).

Родиной гороха считают Юго-Западную Азию, где он возделывался еще в каменном веке, в России горох известен с незапамятных времен.

Корневая система гороха стержневого типа, хорошо разветвленная и глубоко проникает в почву. Горох, как и все бобовые растения, обогащает почву азотом. На его корнях и в зоне корней развиваются полезные микроорганизмы способные усваивать атмосферный азот и оказывающие существенное влияние на накопление в почве азота, необходимого для питания растений. Стебель у гороха травянистый, простой или ветвящийся, достигающий длины до 250 см. Может быть полегающим 50-100 см или кустовым, у которого стебель неветвящийся высотой 15-60 см, с короткими междоузлиями и скученными цветками в пазухах верхушечных листьев.

Листья сложные, непарноперистые. Черешки листьев оканчиваются усиками, цепляющимися за опору и удерживающие растение вертикально.

Цветки в основном белые или фиолетовые различных оттенков, мотылькового типа, расположены по 1-2 в пазухах листьев. У штамбовых форм встречаются цветоносы с 3-7 цветками, часто собранные в соцветия. Цветение начинается через 30-55 дней после посева. Плод гороха - боб, в зависимости от сорта имеет различную форму, размер и окраску. В каждом бобе содержится 4-10 семян, расположенных в ряд. Форма и цвет семян разнообразная, поверхность их гладкая или морщинистая. Окраска кожуры семян соответствует окраске цветков данного растения. Строение семени гороха приведено на рисунке 2 в Приложении 1.

Горох в России всегда был самым популярным из бобовых растений: его нетрудно выращивать, урожай он даёт богатый, насыщает отлично и не требует сложной кулинарной обработки. Кроме того, в нашей стране давно известны целебные свойства гороха, которые обусловлены его богатым составом: в нём очень много полезных веществ, но особенно он отличается количеством витаминов и минералов, в том числе и очень редких (Приложение 1, рис.1,2)

1.2. Влияние абиотических факторов на развитие и рост растений

Влияние света на рост растений

Влияние света на растения просто огромно. Без солнечного света невозможна жизнь ни одного растения, он необходим им для нормального развития. Так под влияние света на растения, в листья растения происходят различные химические реакции под названием фотосинтез (рис. 1 Приложение 2), во время которого растение потребляет из воздуха углекислый газ и воду, а возвращает кислород. Благодаря углекислому газу в растении образуются новые ткани. Без фотосинтеза рост растений не возможен. Кроме того свет нужен для того, что бы у растения была энергия.

Некоторые растения очень быстро приспосабливаются к недостатку света. Но, тем не менее, проявляются симптомы, говорящие о том, что растению недостаточно света. Когда растению не хватает света, рост растения замедляется. А листья вытягиваются вверх и черенки удлиняются. Увеличивается расстояние между побегами и листьями, стебель становится тоньше.

Если появляются новые листочки, они намного меньше, чем должны были бы быть. А нижние листья желтеют и отмирают. Но самое неприятное, растение будет мало цвести, а цветочки будут бледнее, а бутоны будут плохо развиваться и опадать.

Влияние тепла

Тепло наряду со светом представляет основной фактор жизни растений и необходимое условие для биологических, химических и физических процессов в почве. По требовательности к теплу среди культур выделяют следующие группы.

· Морозостойкие и зимостойкие. Рост у этих растений начинается при температуре 1 градус, они переносят заморозки до –10 градусов. Оптимальная температура для роста и развития - 15-20 градусов тепла.

· Холодостойкие. Семена этих культур прорастают при 2-5 градусов тепла. Температура выше 25 градусов угнетает растения.

· Теплолюбивые. Семена этих культур прорастают при 12-15 градусов. Температуры ниже 15 градусов и выше 30 градусов угнетают растения. При 0 градусов они погибают.

· Жаростойкие выдерживают температуры выше 40 градусов.

Недостаток тепла задерживает рост растений. Низкие температуры могут вызвать не только повреждение их наземной части, но и подмерзание корней. Особенно сильно при этом страдают молодые растения, они развиваются слабыми и нередко погибают.

При температурах выше оптимальных возможна гниль верхушки.

Потребность в тепле может изменяться даже в течение суток. Так, ночью растения не расходуют энергию на фотосинтез, следовательно, потребность в тепле низкая. Кроме того, снижается расход питательных элементов на дыхание. Следовательно, ночью благоприятная температура воздуха для растений должна быть на 5-7 С ниже, чем днем.

Влияние воды

Вода - необходимое условие для роста и развития любой флоры

Вода поступает в почву с осадками из воздуха, с грунтовыми водами и при поливе. Однако излишняя влага вытесняет из почвы воздух и отрицательно влияет на рост и развитие культур. На почвах переувлажненных или с близким стоянием грунтовых вод растения плохо развиваются.

Способность различных видов почв впитывать и сохранять влагу неодинакова. Лучше всего набирают воду песчаные почвы, так как в них самое большое пространство между частицами, но вследствие этого и удерживать ее они не способны. Глинистые почвы из-за своей плотной структуры и незначительных пространств между твердыми частицами впитывают влагу много хуже и медленно избавляются от ее избытка. Идеальным вариантом являются гумусные почвы, которые хорошо впитывают влагу и, удерживая ее внутри, и доставляют к корням растений.

Кроме того, почвенная влага является регулятором температуры и поддерживает ее баланс. Чем больше увлажнена почва, тем медленнее она нагревается и медленнее охлаждается.

Влияние воздуха

Почти всем растениям для жизнедеятельности необходим воздух. Из воздуха они потребляют кислород и углерод. Интенсивность дыхания растений в разные периоды развития неодинакова. Особенно энергично дышат прорастающие семена. Отметим, что дышат все органы растения, в том числе и корни. Листья и стебли в кислороде недостатка не испытывают, но корни, особенно на плотных почвах, часто подвержены кислородному голоданию. Следовательно, почву необходимо поддерживать в рыхлом состоянии. При неблагоприятных для дыхания условиях наступает кислородное голодание, иногда приводящее к ослаблению, заболеванию и гибели растений. Подобные неприятности возможны при длительном затоплении участков водой, образовании ледяной корки и т. п. Значит, должно быть, постоянное обеспечение доступа воздуха в почву и поддержание достаточного содержания в ней углерода. Для этого почву постоянно рыхлят и вносят большие дозы органических удобрений.

2 Практическая часть. Методика исследования

Материал и методика исследования

Для того чтобы понаблюдать за влиянием внешних факторов на рост и развитие растений мы использовали семена гороха. Для проведения эксперимента мы поместили проросшие семена в разные условия, с целью исследования влияния этих условий на их рост и развитие.

Место проведения исследования: г. Когалым

Сроки проведения: март 2013 года

Оборудование: семена гороха, стаканы с почвой, магнит, вода, холодильник, ручка, линейка, фотоаппарат.

2.1 Значение воды, света, температуры на прорастания и рост семян

Для решения поставленных задач были проведены следующие опыты:

Опыт № 1 : чтобы доказать необходимость воды и воздуха в прорастании семян, был поставлен следующий опыт.

Берем 3 емкости, на дно каждой кладем семена гороха по 10-15 штук.

Емкость № 1 оставляем сухой; емкость № 2 заполняем водой до краев (т. е. без доступа воздуха); в емкость № 3 - наливаем воды столько, чтобы она смачивала семена, но не покрывала их полностью.

Через 3 дня смотрим результат:

Емкость № 1 - осталось без изменения;

Емкость № 2 - семена набухли, но не проросли;

Емкость № 3 - семена дали ростки

Смотри приложение 3.

Результат первого опыта доказывает, что для прорастания семян необходимы воздух и вода.

Опыт № 2 : помимо влаги и воздуха на рост растений влияют температурные условия. В этом тоже легко убедится. Чтобы доказать необходимость температурных условий в прорастании семян, был поставлен следующий опыт.

Берем 2 стакана, сажаем в них по 1 проросшему семени гороха, поливаем водой.

Стакан № 1 оставляем в комнате (t=23-25)

Стакан № 2 ставим в холодильник (t=4-6)

Через 5-6 дней смотрим результат:

Стакан № 1 - горох пророс и выпустил несколько дополнительных листьев;

Стакан № 2 - остался без изменений.

Следовательно, для роста растений необходима определенная температура. Семена одних растений при прорастании требуют много тепла (огурцы, кукуруза), другие мало (пшеница, рожь). С этими особенностями семян связаны разные сроки посевов (пшеницу и рожь сеют ранней весной; кукурузу и огурцы - поздней весной, когда почва уже прогрелась) (приложение 4).

Опыт № 3 : чтобы доказать влияние света и магнитного поля на рост и развитие растений, был поставлен следующий опыт.

Проросшие семена были посажены в 3 горшка с почвой и были заданы следующие условия:

горшок № 1 - темное теплое место, полив - отстоявшейся водой.

горшок № 2 - светлое теплое место, полив - отстоявшейся водой.

горшок № 3 - светлое теплое место, полив - отстоявшейся водой+ под дно горшка поместили магнит.

Результаты опыта:

Горшок № 1: растения взошли позднее, чем в горшках № 2,3 на 6 дней. Имеют вытянутую форму, стебли слабые, окраска бледная, желто-зеленая.

Горшок № 2: растения взошли раньше чем в горшке № 1, имеют большое количество листьев, растения крепкие, ярко-зеленого цвета.

Горшок № 3: растения взошли раньше чем в горшке № 1, имеют большое количество листьев, растения крепкие, ярко-зеленого цвета.

Результат третьего опыта доказывает, что для наилучшего роста и развития растений необходима совокупность внешних факторов (света, тепла, влаги, кислорода воздуха, минеральных солей), влияние магнитного поля не отмечено (приложение 5).

Заключение

Подводя итоги проделанной мной работы, можно сказать, что поставленная мною цель работы и задачи выполнены. Я пришла к следующим выводам, что:

· для прорастания семян необходимы воздух и вода;

· для роста растений необходима определенная температура;

· для наилучшего роста и развития растений необходима совокупность внешних факторов (света, тепла, влаги, кислорода воздуха, минеральных солей), влияние магнитного поля не отмечено.

Список литературы:

1.Серебрякова Т.И., Еленевская А.Г., Гуленкова М.А. Биология: Растения, бактерии, грибы, лишайники.

2.Багрова Л.А. Я познаю мир (растения). Детская энциклопедия. М.: АСТ: Люкс, 2005 г.

3.Сергеев Б.Ф. Я познаю мир: Детская энциклопедия. М.: ООО Издательство АСТ 2004 г.

4.Ликум А. Всё обо всём: популярная энциклопедия для детей.


Дыхание растений- представляет процесс, соответствующий дыханию животных. Растение поглощает атмосферный кислород, а последний воздействует на органические соединения их тела таким образом, что в результате появляются вода и углекислота. Вода остается внутри растения, а углекислота выделяется в окружающую среду. При этом происходит уничтожение, трата органического вещества; следовательно, Д. прямо противоположно процессу ассимиляции углерода. До известной степени его можно уподобить окислению и горению вещества.

Наиболее простой механизм обмена газами у водорослей, которые не имеют тканей и органов, а воздух непосредственно проникает в каждую клетку. У мхов, папоротников, голосеменных и покрытосеменных воздух проходит более сложный путь. Через устьица он поступает в межклетники, которые пронизывают все растения, а оттуда - в клетки.
У наземных растений устьица, как правило, расположены на нижней стороне листа, а у живущих в воде - на верхней, так как нижней стороной он лежит на поверхности воды. Поступление воздуха в листья регулируется периодическим открыванием и закрыванием устьиц.


Внутрь стволов деревьев и кустарников, покрытых толстой пробкой или корой, воздух поступает через отверстия - чечевички. Хорошо видны чечевички у березы, они крупные (до 15 см) и имеют вид узких темных поперечных полосок.

У ряда болотных растений затруднено поступление воздуха в корни, так как в насыщенной влагой почве мало воздуха. У этих растений сформировались приспособления, обеспечивающие нормальный газообмен. Так, у некоторых растений образовались дыхательные корни, которые выступают над поверхностью воды, например у растений мангровых лесов.
Процесс дыхания связан с непрерывным потреблением кислорода клетками и тканями растений и осуществляется при участии различных ферментов. Вначале сложные органические вещества (белки, жиры, углеводы) под действием ферментов распадаются на более простые, которые при участии кислорода расщепляются до конца, т.е. до образования углекислого газа и воды. При этом освобождается энергия, которая используется растением (а также любым живым организмом) на процессы жизнедеятельности: поглощение из почвы воды и минеральных веществ, их передвижение, рост, развитие, размножение.

В освобождении энергии, заключенной в органических веществах, состоит главное значение дыхания. По существу, при дыхании освобождается солнечная энергия, которую растение использовало в процессе фотосинтеза на образование органических веществ и таким путем запасло ее. В процессе дыхания окисление сложных органических веществ до углекислого газа и воды происходит постепенно и энергия освобождается небольшими порциями. Если бы энергия освобождалась вся сразу, тогда клетка сгорела бы.

Дыхание, подобно другим процессам жизнедеятельности, зависит от факторов среды: температуры, влажности, содержания кислорода, степени освещенности и др. Для протекания процессов дыхания требуются определенные температурные условия, причем они разные у каждого вида растений и его органов. У большинства растений для дыхания наиболее благоприятна температура 25 - 30°С. У некоторых видов растений дыхание происходит и при отрицательных температурах, хотя этот процесс протекает очень слабо. Например, почки лиственных и иглы хвойных деревьев дышат и при температуре - 20 - 25°С. У арктических растений даже при низких температурах интенсивность дыхания высокая.
Наиболее интенсивно дышат молодые органы и ткани растений, находящиеся в состоянии активного роста. Цветение и плодоношение сопровождаются усилением дыхания развивающихся цветков и плодов, что связано с образованием новых органов и тканей, обладающих высоким уровнем обмена веществ.

Интенсивность дыхания растений зависит от содержания воды в клетках.

Чем меньше воды в клетках, тем слабее идет в них дыхание. Очень слабо дышат сухие семена. С увеличением влажности дыхание семян возрастает в сотни и тысячи раз. Это отрицательно сказывается на хранении семян, так как они сильно разогреваются и погибают. Повышение интенсивности дыхания имеет огромное биологические значение для прорастания семян, поскольку усиление дыхания сопровождается освобождением большого количества энергии, необходимой для роста и развития зародыша.

На дыхание растений влияет содержание кислорода в окружающей среде. Угнетение дыхания начинается при уменьшении содержания кислорода до 5%. Недостаток кислорода испытывают подземные органы (корни и корневища) растений, обитающих на заболоченных и глинистых почвах.


Густая растительность. Фото: Mike Baird


В растениеводстве применяются различные агротехнические приемы для улучшения дыхания корней. Так, проводят комплексную обработку посевов машинами, чтобы сократить число обработок и уменьшить уплотненность почвы. Специальными культиваторами почву рыхлят и таким путем улучшают доступ воздуха к корням, при этом срезают сорняки, подкармливают культурные растения. Сильно увлажненные земли осушают, создают дренаж.
На дыхание растений влияет и свет, хотя дышат они днем и ночью, на свету и в темноте. Свет вызывает повышение температуры растения, отчего дыхание его усиливается. У светолюбивых растений дыхание более интенсивное, чем у теневыносливых.
Изменения в окружающей среде, связанные с деятельностью человека, также воздействуют на дыхание растений. Отрицательно влияют на дыхание вредные примеси, пыль, выделяемые промышленными предприятиями.

Аэробное дыхание

Аэробное дыхание – это окислительный процесс, в ходе которого расходуется кислород. При дыхании субстрат без остатка расщепляется до бедных энергией неорганических веществ с высоким выходом энергии. Важнейшими субстратами для дыхания служат углеводы. Кроме того, при дыхании могут расходоваться жиры и белки.

Аэробное дыхание включает два основных этапа:
- бескислородный, в процессе, которого происходит постепенное расщепление субстрата с высвобождением атомов водорода и связыванием с коферментами (переносчиками типа НАД и ФАД);
- кислородный, в ходе которого происходит дальнейшее отщепление атомов водорода от производных дыхательного субстрата и постепенное окисление атомов водорода в результате переноса их электронов на кислород.
На первом этапе вначале высокомолекулярные органические вещества (полисахариды, липиды, белки, нуклеиновые кислоты и др.) под действием ферментов расщепляются на более простые соединения (глюкозу, высшие карбоновые кислоты, глицерол, аминокислоты, нуклеотиды и т.п.) Этот процесс происходит в цитоплазме клеток и сопровождается выделением небольшого количества энергии, которая рассеивается в виде тепла. Далее происходит ферментативное расщепление простых органических соединений.

Анаэробное дыхание

Анаэробное дыхание. Некоторые микроорганизмы способны использовать для окисления органических или неорганических веществ не молекулярный кислород, а другие окисленные соединения, например, соли азотной, серной и угольной кислот, превращающиеся при этом в более восстановленные соединения. Процессы идут в анаэробных условиях, и их называют анаэробным дыханием.
У микроорганизмов, осуществляющих такое дыхание, конечным акцептором электронов будет не кислород а неорганическое соединения – нитриты, сульфаты и карбонаты. Таким образом, различия между аэробным и анаэробным дыханием заключается в природе конечного акцептора электронов.



Дыхание растений и животных по биологии - процесс уникальный и универсальный. Оно выступает как неотъемлемое свойство любого организма, населяющего Землю. Рассмотрим далее, как происходит дыхание растений.

Биология

Жизнь организмов, как и любое проявление их деятельности, непосредственно связаны с расходом энергии. Дыхание растений, питание, органы, фотосинтез, передвижение и поглощение воды и необходимых соединений, а также многие функции связаны с непрерывным удовлетворением необходимых потребностей. Организмам требуется энергия. Она поступает от потребляемых питательных соединений. Кроме этого, организму нужны пластические вещества, служащие в качестве строительного материала для клеток. Распад этих соединений, который происходит в процессе дыхания, сопровождается высвобождением энергии. Она и обеспечивает удовлетворение жизненно-важных потребностей.

Рост и дыхание растений

Эти два процесса тесно связаны друг с другом. Полноценное дыхание растений обеспечивает активное развитие организма. Сам процесс представлен в виде сложной системы, включающей множество сопряженных окислительно-восстановительных реакций. В ходе них изменяется химическая природа органических соединений и используется присутствующая в них энергия.

Общая характеристика

Клеточное дыхание растений - окислительный процесс, происходящий с участием кислорода. В ходе него происходит распад соединений, который сопровождается образованием химически активных продуктов и высвобождением энергии. Суммарное уравнение всего процесса выглядит так:

С6Н12О6 + 602 > 6С02 + 6Н20 + 2875 кДж/моль

Далеко не вся энергия, которая высвобождается, может использоваться для обеспечения процессов жизнедеятельности. Организму необходима в основном та ее часть, которая сосредотачивается в АТФ. Во многих случаях синтезу аденозинтрифосфата предшествует формирование разности электрозарядов на мембране. Этот процесс связан с отличиями в концентрации водородных ионов по разные ее стороны. По современным данным не только аденозинтрифосфат, но и протонный градиент выступает источником энергии для обеспечения жизнедеятельности клетки. Обе формы могут использоваться для активации процессов синтеза, поступления, перемещения питательных соединений и воды, формирования разности потенциалов между внешней средой и цитоплазмой. Энергия, которая не накапливается в АТФ и протонном градиенте, в большей степени рассеивается в виде света или тепла. Она является бесполезной для организма.

Зачем нужен этот процесс?

Какое значение имеет дыхание у растений? Этот процесс считается центральным в жизнедеятельности организма. Энергия, которая выделяется при дыхании, используется для роста и поддержания в активном состоянии уже развитых частей растения. Однако это далеко не все моменты, определяющие важность этого процесса. Рассмотрим, в чем основная роль дыхания растений. Этот процесс, как выше было сказано, представляет собой сложную окислительно-восстановительную реакцию. Она проходит в несколько этапов. На промежуточных стадиях происходит образование органических соединений. Впоследствии они используются в разных метаболических реакциях. Среди промежуточных соединений можно выделить пентозы и органические кислоты. Дыхание растений, таким образом, - это источник множества метаболитов. Из суммарного уравнения видно, что в ходе этого процесса образуется также и вода. В условиях обезвоживания она может спасти организм от гибели. В суммарном виде дыхание противоположно фотосинтезу. Однако в ряде случаев эти процессы дополняют друг друга. Они способствуют поставке и энергетических эквивалентов, и метаболитов. В некоторых случаях при выделении энергии в виде тепла, дыхание растений приводит к бесполезной утрате сухого вещества. Поэтому далеко не всегда увеличение интенсивности этого процесса полезно для организма.

Особенности

Дыхание растений осуществляется круглосуточно. В ходе этого процесса организмы поглощают кислород из атмосферы. Кроме этого, они вдыхают О2, образованный у них вследствие фотосинтеза и имеющийся в межклетниках. В течение дня кислород в основном поступает через устьица молодых побегов и листьев, чечевички стеблей, а также кожицу корней. Ночью практически у всех растений они прикрыты. В этот период для дыхания растения используют кислород, который накопился межклетниках и образовался при фотосинтезе. Кислород, поступивший в клетки, окисляет органические сложные соединения, имеющиеся в них, преобразуя их в воду и углекислый газ. При этом происходит высвобождение энергии, затраченной на их формирование при фотосинтезе. Углекислый газ удаляется из организма через клеточную поверхность молодых корней, чечевички, устьица.

Опыты

Чтобы убедиться в том, что дыхание растений действительно происходит, можно следующим образом:

Как использовать полученные знания?

В процессе выращивания культурных насаждений почва уплотняется, а содержание в ней воздуха значительно снижается. Для улучшения течения процессов жизнедеятельности осуществляют рыхление грунта. От недостатка кислорода особенно страдают те растения, которые выращиваются на заболоченных (сильно увлажненных) почвах. Улучшение снабжения О2 достигается путем осушения земли. Негативным образом на процессе дыхания сказывается пыль, которая оседает на листьях. Твердые мелкие ее частицы забивают устьица, что значительно затрудняет поступление кислорода в листья. Кроме этого, вредное воздействие оказывают и примеси, которые попадают в воздух при сжигании на промышленных предприятиях разного вида топлива. В этой связи при озеленении городской территории, как правило, высаживают деревья, устойчивые к запыленности. К ним, например, относят конский каштан, липу, черемуху, тополь. В процессе хранения зерна особое внимание следует уделять их влажности. Дело в том, что при повышении ее уровня усиливается интенсивность дыхания. Это, в свою очередь, способствует тому, что семена начинают сильно разогреваться выделяющимся теплом. Это, в свою очередь, негативно сказывается на зародышах - они погибают. Во избежание таких последствий семена, которые закладываются на хранение, должны быть сухими. Само же помещение необходимо хорошо проветривать.

Заключение

Таким образом, дыхание растений имеет огромное значение для обеспечения нормального их развития на любой стадии. Без этого процесса невозможно не только обеспечение нормальной жизнедеятельности организма, но и формирование всех его участков. В ходе дыхания образуются важнейшие соединения, без которых существование растения невозможно. Этот сложный, многоэтапный процесс является центральным звеном во всей жизни любого организма. Знания об этом способствуют обеспечению надлежащих условий выращивания и хранения культурных растений, достижению высокой урожайности зерновых и прочих сельскохозяйственных насаждений. Известно, что при дыхании выделяется тепло. Возле некоторых культур температура воздуха может повышаться более чем на 10 градусов. Такое свойство используется человеком в разных целях.