Из чего делается лампочка. Цветовая температура ламп накаливания. Ограничения импорта, закупок и производства

История возникновения. Устройство. Выбор качественной лампы.

История ламп . В настоящее время сложно встретить человека, который не был бы знаком с лампами накаливания. Прогресс в области приборов освещения предложил альтернативные источники света – люминесцентные и диодные лампы, однако по некоторым параметрам им пока не удается превзойти обыкновенную «лампочку Ильича».

История лампы накаливания очень запутана и ее появлению предшествовали изобретения многих ученых-изобретателей.

По общепринятой версии, она началась в далеком 1872 году, когда русский ученый А. Н. Лодыгин догадался пропустить электрический ток через угольный стержень.

Сам стержень находился в безвоздушном пространстве стеклянной прозрачной колбы. Увеличение силы тока вызывало более интенсивную светоотдачу, пока не была достигнута температура плавления и лампа погасла. Так опытным путем были установлены оптимальные режимы работы для первых ламп накаливания и уже через год – в 1873 г. в Санкт-Петербурге были впервые опробованы несколько фонарей с такими лампами.

В это же самое время параллельно с Лодыгиным разработкой лампы накаливания занимался американский изобретатель Томас Эдисон. Он в 1879 году первым запатентовал лампу накаливания с угольной нитью, что впоследствии и послужило причиной, что именно его многие считают настоящим «отцом лампы накаливания».

На самом деле, как это часто бывает в области технических изобретений, лампа была изобретена в разных странах почти одновременно, поэтому нельзя с уверенностью утверждать, кому принадлежит авторство.

Работая над усовершенствованием лампы с угольной нитью, Лодыгин в 1890 году предложил заменить нить накаливания металлической, изготавливаемой из тугоплавкого металла – вольфрама. В отличие от других проводящих электрический ток материалов, вольфрам обладает очень высокой температурой плавления – около 3410°C.

В это же время Эдисон предлагает использовать в конструкции ламп изобретенную им резьбовую систему патрон-цоколь. Эта конструкция дошла до нашего времени практически, не претерпев никаких существенных изменений. Цоколь ламп накаливания обозначается «Е-XX», где «Е» - цоколь Эдисона (Edison Screw), а «XX» - внешний диаметр в мм. В Европе и на территории постсоветского пространства широкое распространение получили Е27 и Е14.

На американском континенте применяются другие размеры цоколя, чтобы избежать совместимости с европейскими аналогами, так как напряжение в электросетях различается (120 В. против 220 В., соответственно). В 1910 г. американский физик Ленгмюр предложил заменить вольфрамовую нить скрученной в тонкую спираль, что позволило уменьшить габариты стеклянной колбы, улучшить режим работы лампы и увеличить светоотдачу.

Устройство . Современная лампа накаливания, несмотря на кажущуюся простоту, на самом деле воплощает в себе множество изобретений и открытий. Для изготовления спирали накаливания в настоящее время кроме дорогостоящего вольфрама используют осмий или их соединение. Колба перестала быть просто вакуумной – очень часто ее стали заполнять инертным газом (аргон, криптон, ксенон и).

Подобное решение позволило устранить давление атмосферы на вакуумированную колбу, а также увеличить суммарную продолжительность работы лампы. Дело в том, что электрический ток, проходящий по вольфрамовой спирали, вызывает ее нагрев и свечение. При нагреве до столь высоких температур (до 2900°С) в безвоздушной колбе вольфрам начинает интенсивно испаряться и оседать на стекле. Стекло постепенно теряет прозрачность, и интенсивность светоотдачи уменьшается, а продолжительность работы нити падает.

Все мы знаем, как неприятно смотреть на яркий свет прозрачной лампы накаливания, поэтому промышленностью выпускаются не только прозрачные колбы, но и матовые. Благодаря этому, свет получается немного рассеянным и более мягким, хотя при этом незначительно теряет в интенсивности.

Выбор качественной лампы накаливания – не такая простая задача, как может показаться на первый взгляд. У многих в домах до сих пор горят лампочки с пятилетним и более стажем работы, а бывает, что совсем недавно купленная лампа перегорает. Устройство обыкновенной лампы накаливания показано на рисунке:

где: 1 - стеклянная колба; 2 - наполненная инертным газом полость колбы; 3 - спираль накаливания; 4, 5 - электроды; 6 - дополнительные опоры спирали; 7 - стеклянная ножка; 8 - внешний токопровод; 9 - цоколь; 10 - изолятор цоколя; 11 - нижний контакт цоколя.

Выбор лампы накаливания . При покупке лампы следует проверить стекло колбы на наличие посторонних вкраплений, так как только в этом случае обеспечивается его достаточная прочность. При должной практике качество используемого стекла можно проверить легким постукивание по нему фалангой пальца – звук должен быть немного приглушенным, «прочным». На металлическом цоколе не должно быть повреждений – отверстий или вмятин.

Наличие небольшого отверстия на цоколе еще не означает полной неработоспособности лампы, но заставляет задуматься о правильности процессов производства или транспортировки. Нижний контакт цоколя может быть широким – с диаметром около 7 мм, а может – узким 5 мм. Широкий контакт более предпочтителен, так как обеспечивает качественный контакт в патроне даже при небольшом смещении внутренней контактной пластины (язычка).

Однако, большинство современных ламп поставляется именно с узкими нижними контактами, поэтому может сложиться ситуация, когда выбирать не из чего. Колба должна быть надежно закреплена с патроном и не отставать в местах приклеивания. Внешний токопровод (8) может соединяться с цоколем либо обычной пайкой, либо точечной сваркой.

Пайка должна быть небольшой и аккуратной, а при сварке – крепко держаться. Спираль накаливания (3) не должна слишком провисать. Если такое происходит, значит, лампа уже эксплуатировалась и спираль немного растянулась. Очень важным моментом является осмотр качества обжима спирали в местах соединения с ней электродов (4, 5).

При недостаточном обжиме срок службы лампы существенно снижается. У качественных ламп ножка (7) сбоку не имеет отверстий. Указанное рабочее напряжение должны быть выше, чем фактическое. То есть, несмотря на стандарт 220 В., выгоднее выбирать лампы с на 230-240 В. Особо следует отметить, что завышенное свыше 240 В. напряжение резко сокращает срок службы лампы.

Лампа накаливания – электрический осветительный прибор, принцип действия обусловлен нагревом до высоких температур нити тугоплавкого металла. Тепловой эффект тока известен давно (1800 год). С течением времени вызывает сильный нагрев (выше 500 градусов Цельсия), заставляя нить светиться. В стране вещички носят имя Ильича, на деле продвинутые историки бессильны однозначно дать ответ, кого назвать изобретателем лампы накаливания.

Конструкция ламп накаливания

Изучим строение прибора:

История создания ламп накаливания

Спирали далеко не сразу стали изготавливать из вольфрама. Применялись графит, бумага, бамбук. Много людей шло параллельным путем, создавая лампы накаливания.

Бессильны привести список 22 имен ученых, называемых зарубежными писателями авторами изобретения. Неправильно приписывать заслуги Эдисону, Лодыгину. Сегодня лампы накаливания далеки от совершенства, стремительно теряют маркетинговую привлекательность. Превышение амплитуды питающего напряжения на 10% (половину пути — 5% — РФ проделала в 2003 году, подняв вольтаж) номинала сокращает срок службы вчетверо. Снижение параметра закономерно урезает отдачу светового потока: 40% теряется при эквивалентном относительном изменении характеристик питающей сети в меньшую сторону.

Пионерам гораздо хуже. Джозеф Сван (Joseph Swan) отчаялся добиться достаточной разреженности воздуха колбы лампы накала. Насосы (ртутные) того времени неспособны выполнить задачу. Нить сгорала посредством сохранившегося внутри кислорода.

Смысл ламп накала довести спирали до степени нагрева, тело начинает светиться. Сложностей добавляло отсутствие в середине XIX века высокоомных сплавов – квота преобразования силы электрического тока сформирована увеличенным сопротивлением проводящего материала.

Усилия ученых мужей ограничивались следующими направлениями:

  1. Выбор материала нити. Критериями выступали одновременно высокое сопротивление, устойчивость к горению. Волокна бамбука, являющегося изолятором, покрывали тонким слоем проводящего графита. Малая площади проводящего слоя угля повышало сопротивление, давая нужный результат.
  2. Однако древесная основа быстро воспламенялась. Вторым направлением считаем попытки создать полный вакуум. Кислород известен с конца XVIII века, ученые мужи быстро доказали: элемент участвует в горении. В 1781 году Генри Кавендиш определил состав воздуха, начиная разрабатывать лампами накала, слуги науки ведали: земная атмосфера разрушает нагретые тела.
  3. Важно передать напряжение нити. Шла работа, преследующая цели создания разъемных, контактных частей цепи. Понятно, тонкий слой угля снабжен большим сопротивлением, как подвести электричество? Трудно поверить, пытаясь достичь приемлемых результатов, использовали ценные металлы: платина, серебро. Получая приемлемую проводимость. Недешевыми путями удавалось избежать нагрева внешней цепи, контактов, нить накалялась.
  4. Отдельно отметим резьбу цоколя Эдисона, используемую поныне (Е27). Удачная идея, легшая в основу быстро заменяемых лампочек накала. Прочие способы создания контакта, наподобие пайки, мало годятся. Соединение способно распасться, разогретое действием тока.

Стеклодувы XIX века достигли профессиональных высот, колбы изготавливали запросто. Отто фон Герике, конструируя генератор статического электричества, рекомендовал сферическую колбу залить серой. Материал застынет — стекло разбить. Получался идеальный шар, при трении собирал заряд, отдавая стальному стержню, проходящему через центр конструкции.

Пионеры отрасли

Можете прочесть: идея подчинить электричество целям освещения впервые реализована сэром Гемфри Дэви. Вскоре после создания вольтова столба ученый вовсю экспериментировал с металлами. Выбрал благородную платину за высокую температуру плавления – прочие материалы воздухом быстро окислялись. Попросту сгорали. Источник света вышел неяркий, давая основу сотням последующих наработок, показав направление движения желающим получить конечный результат: осветить, заручившись помощью электричества.

Произошло в 1802 году, ученому исполнилось 24 года, позже (1806) Гемфри Дэви представил суду общественности вполне работоспособный разрядный осветительный прибор, в конструкции которого ведущую роль занимали два угольных стрежня. Следует отнести короткую жизнь столь блистательного светила небосвода науки, давшего миру представление о хлоре, йоде, ряде щелочных металлов, на постоянные эксперименты. Смертельные опыты по вдыханию угарного газа, работы с оксидом азота (мощным отравляющим веществом). Авторы отдали честь блистательным подвигам, сократившим жизнь ученого.

Гемфри забросил, вырезав целое десятилетие исследований осветительных приборов, вечно занятый. Сегодня Дэви называют отцом электролиза. Трагедия 1812 года Felling Colliery наложила глубокий отпечаток, помрачив сердца многих. Сэр Гемфри Дэви пополнил ряды занявшихся разработкой безопасного источника света, уберегающего шахтёров. Электричество подходило мало, не существовало мощных надежных источников энергии. Чтобы рудничный газ перестал взрываться временами, применялись разные меры, наподобие металлической сетки-диффузора, препятствующей распространению пламени.

Сэр Гемфри Дэви сильно опередил время. Лет примерно на 70. Конец XIX века лавинообразно выдал новые конструкции, призванные вырвать человечество из вечной тьмы, благодаря использованию электричества. Одним из первых Дэви отметил зависимость сопротивления материалов от температуры, позволяя позже Георгу Ому получить . Спустя полвека открытие было положено в основу создания Карлом Вильгельмом Сименсом первого электронного термометра.

6 октября 1835 года Джеймс Боумэн Линдсей продемонстрировал лампочку накала, окруженную стеклянной колбой для защиты от действия атмосферы. Как выразился изобретатель: можно было читать книгу, рассеивая темноту на расстоянии полутора футов от подобного источника. Джеймс Боумэн, считают общепризнанные источники, является автором идеи защиты нити накала стеклянной колбой. Правда?

Склонны утверждать, в этом месте мировая история немного запуталась. Первый эскиз подобного устройства датируется 1820 годом. Приписывается почему-то Уорену де ла Ру. Которому было… 5 лет от роду. Одинокий исследователь заметил несуразицу, поставив дату… 1840 год. Бессилен детсадовец сделать столь великое изобретение. Причем забылись впопыхах демонстрации Джеймса Боумэна. Многие исторические книги (одна 1961 года, авторства Льюиса) так трактовали неведомо уже откуда взявшуюся картинку. Видимо, автор ошибся, другой источник, 1986 года Джозефа Стоера, относит изобретение на счет Августа Артура де ла Рива (1801 года рождения). Гораздо лучше соответствует действительности, объясняя демонстрации Джеймса Боумэна пятнадцатью годами позже.

Прошло незамеченным русскоязычным доменом. Английские источники проблема трактуют следующим образом: имена де ла Ру и де ла Рив явно перепутаны, касаться могут минимум четырех личностей. Физики Уорен де ла Ру, Август Артур де ла Рив упомянуты, первый в 1820 году посещал детсад, образно говоря. Прояснить историю могут отцы упомянутых мужей: Томас де ла Ру (1793 – 1866), Чарльз Гаспар де ла Рив (1770 – 1834). Неизвестный джентльмен (леди) провел целое исследование, убедительно доказал: ссылка на фамилию де ла Ру несостоятельна, сослался горой научной литературы начала XX — конца XIX века.

Неизвестный потрудился просмотреть патенты Уорена де ла Ру, набралось девять штук. Лампы накала описываемой конструкции отсутствуют. Августа Артура де ла Рива, начавшего публикацию научных трудов в 1822 году, сложно представить изобретающим стеклянную колбу. Посещал Англию – родину лампочки накала – исследовал электричество. Желающие могут написать автору статьи англоязычного сайта по электронной почте [email protected]. Пишет «ежков»: с удовольствием примет к сведению информацию, касающуюся вопроса.

Истинный изобретатель лампочки накала

Достоверно известно, в 1879 году Эдисон запатентовал (US Patent 223898) первую лампочку накала. Потомки зафиксировали событие. Касаемо более ранних публикаций, авторство вызывает сомнение. Неизвестен подаривший миру коллекторный двигатель. Сэр Гемфри Дэви отказался брать патент на изобретенный безопасный фонарь для шахты, сделав изобретение общедоступным. Подобные прихоти создают немалую путаницу. Бессильны выяснить, кто первым придумал помещать нить накала внутрь стеклянной колбы, обеспечив работоспособность конструкции, используемой повсеместно.

Лампы накаливания выходят из моды

Лампа накаливания использует вторичный принцип производства света. Достигает высокой температуры нить. КПД устройств мал, большая часть энергии расходуется впустую. Современные нормы диктуют стране беречь энергию. В моде разрядные, светодиодные лампочки. Навсегда остались в памяти Гемфри Дэви, де ла Ру, де ла Рив, Эдисон, приложившие руку, потрудившиеся вырвать человечество из тьмы.

Обратите внимание, Чарльз Гаспар де ла Рив скончался в 1834 году. Следующей осенью прошла первая публичная демонстрация… Некто нашел записи погибшего исследователя? Вопрос разрешит время, ибо все тайное откроется. Читатели обратили внимание: неизвестная сила подталкивала Дэви попробовать использовать защитную колбу, помогая шахтерам. Сердце ученого оказалось чересчур большим увидеть явный намек. Нужной информацией англичанин обладал…

Несмотря на целый перечень недостатков, выявленных при сравнении с другими источниками искусственного света, лампы накаливания остаются востребованными и в бытовой сфере, и в промышленных отраслях.

Дешевые и простые в использовании приборы не хотят сдавать свои позиции, хотя на рынке появилось огромное количество более экономичных и «долгоиграющих» заменителей – например, ламп на светодиодах.

Еще до недавнего времени лампы накаливания (ЛН) использовались повсеместно, поэтому с их конструкционными особенностями знакомы многие. Причем иногда приходилось «знакомиться» по причине выхода источника света из строя: перегорала вольфрамовая нить, лопалось стекло или колба вылетала из цоколя.

Некоторые производители использовали более надежные и проверенные материалы и относились к выпуску лампочек накаливания настолько ответственно, что их продукция работает уже на протяжении нескольких десятилетий. Но это скорее исключение, чем правило – сегодня никаких гарантий на продолжительный срок эксплуатации не дается.

Схематическое изображение лампы с указанием основных деталей. Конструкция источника искусственного освещения с момента изобретения почти не изменилась, совершенствовались только материалы и состав газа, наполняющего колбу

Главный действующий элемент – так называемое тело накала, закрепленное на держателях и присоединенное к электродам. В момент подключения электроэнергии через него проходит напряжение, вызывающее одновременно нагрев и свечение. Чтобы излучение стало видимым, температура нагрева должна достигнуть 570°С.

Наиболее устойчивым к высокой температуре металлом признан вольфрам. Он начинает плавиться при нагреве до 3422°С. Чтобы максимально увеличить площадь излучения, но сократить объем тела накала внутри стеклянной колбы, его скручивают в спираль.

Привычный комфортный свет желтого оттенка, который создает уют в доме и по визуальной оценке является «теплым», возникает при нагреве нити до 2830-2850°С

Для защиты вольфрама от процесса окисления, характерного для металлов, из колбы откачивают воздух и заменяют его вакуумом или газом (криптоном, аргоном и пр.). Технология наполнения вакуумом устарела, для бытовых ламп чаще всего применяют смесь азота и аргона или криптон.

В результате тестирования была выявлена минимальная продолжительность горения лампы – 1 тысяча часов. Но, учитывая случайные причины, выводящие приборы из строя раньше времени, допускается, что нормативы распространяются лишь на 50% продукции из каждой партии. Время работы второй половины может быть больше или меньше – в зависимости от условий использования.

Виды и применение ЛН

Качественные характеристики и маркировка вольфрамовых лампочек регламентирована ГОСТ Р 52712-2007. По типу наполнения колбы приборы ЛН делятся на вакуумные и газополные разновидности.

Первые служат меньше из-за неизбежного испарения вольфрамовой нити. Вдобавок вольфрамовые испарения оседают на стеклянной оболочке вакуумного источника, что ощутимо снижает прозрачность и способность стекла пропускать свет. Выпускают их с моноспиралью, в номенклатурном обозначении им присвоена литера В.

В газополных приборах минимизированы недостатки вакуумных лампочек. Газ сокращает процесс испарения и препятствует оседанию вольфрама на стенках колбы. Газополные моноспиральные виды обозначены буквой Г, а лампочки с дважды навитой спиралью, т.е. биспиральные, маркируются буквой Б. Если биспиральная разновидность имеет номенклатуру БК, значит, в ее наполнении был использован криптон.

В галогенных лампочках ГЛН к наполнителю стеклянной колбы добавляют бром или йод, благодаря которым испаряющиеся атомы вольфрама после испарения возвращаются снова на нить накала. Галогенки выпускают в двух форматах: в виде кварцевых трубок с длинной спиралью или в капсульном варианте с компактным рабочим элементом.

В государственных стандартах деление на группы происходит по сфере применения, однако затрагиваются и другие характеристики. Предположим, на одном уровне рассматриваются «ЛН электрические миниатюрные» (ЛН мн) и «ЛН инфракрасные зеркальные» (ЗК — приборы с концентрированным светораспределением, ЗД — со средним) – как видите, для обозначения категорий выбраны разные критерии.

Существуют группы, которые можно отнести к наиболее востребованным:

  • общего назначения;
  • для транспортных средств;
  • прожекторные;
  • миниатюрные и пр.

Рассмотрим сферы применения и особенности различных категорий, которые в некоторых случаях могут между собой пересекаться.

Галерея изображений

Описание технических требований к каждой из перечисленных категорий можно найти в соответствующих разделах ГОСТ. Из-за особенностей конструкции и области применения маркировка устройств из различных групп отличается.

Особенности маркировки по применению

Лампу легче подобрать, если ориентироваться в условных обозначениях. Они отражают важные технические характеристики, возможную область использования, особенности конструкции и технологии изготовления.

Маркировка зарубежных производителей напоминает отечественную, но имеет свои особенности. Обычно она носится методом штамповки на цоколь и служит одним из способов отличия оригинального изделия от подделки

Вначале указаны буквы в количестве от 1 до 4, которые отражают характерные конструктивные особенности. Для более легкой расшифровки за основу взята первая буква основополагающего критерия, например, Г – газополная моноспиральная лампа, В – вакуумная моноспиральная, К – криптоновая и др.

Затем следует указание назначения:

  • Ж – железнодорожная;
  • А – автомобильная;
  • СМ – самолетная;
  • ПЖ – для прожекторов и др.

За буквам расположены цифры, обозначающие технические характеристики – напряжение (В) и мощность (ВТ). Маркировка ламп специального типа отличается: мощность не указана, зато можно определить ток, световой поток или силу света. Если в устройстве две спирали, то мощность для каждой из них указывается отдельно. Последняя цифра может обозначать номер разработки, если конструкция модифицировалась.

Основные технические характеристики

Самым главным параметром источников света с телом накала является мощность, определяемая в ваттах. Назначение ламп разнообразное, поэтому диапазон велик – от 0,1 Вт индикаторных «светлячков» до 23 тыс. Вт прожекторов для маяков. Компании General Electric и Osram выпускают мощные светильники для театральных и кинематографических постановок.

Прожекторные изделия отличаются не только значением мощности (до 24000Вт), но и световым потоком. Светодиодный прожектор способен выдать 400 000 люменов, тогда как специальная лампа накаливания – 800 000 люменов

В быту используют маломощные приборы, в основном, от 15 Вт до 150 Вт, а в промышленной сфере применяют лампы мощностью до 1500 Вт.

Качество светового потока и степень рассеивания регулируются материалом изготовления колбы. Максимальная светопередача характерна для ламп с прозрачным стеклом, тогда как два других типа поглощают часть света. Например, матовое стекло колбы крадет 3% светового потока, а белое – 20%.

Часто мощность бытовых ламп накаливания ограничена материалом светильников (абажуров, плафонов). Производители люстр и бра обычно указывают рекомендованные параметры – как правило, 40 Вт, реже 60 Вт.

Обычные электролампы сильно нагревают окружающие предметы в отличии, например, от светодиодных или маломощных галогенных, поэтому их нельзя использовать для монтажа в натяжные потолки

В 2011 году лампы накаливания официально признаны низко экономичными и пожароопасными, поэтому был принят закон о прекращении выпуска источников света 100 Вт. На очереди – закон о запрете устройств мощнее 50 Вт. Однако пользователь ничего не теряет, так как на современном рынке огромное количество более производительных и экономичных светодиодных и других аналогов.

Таблица, отражающая эффективность работы различных видов бытовых ламп. По указанным техническим характеристикам хорошо видно, как лампы накаливания проигрывают альтернативным вариантам по всем позициям

Сегодня многие отказываются от устаревшего вида ламп из-за большого потребления электроэнергии и короткого срока службы. Однако существуют категории людей, предпочитающие покупать дешевые и неэффективные источники – благодаря им производство лампочек накаливания продолжается.

Второй важный показатель, который обязательно нужно учитывать при покупке, — вид цоколя лампы накаливания, определяемый размером. У импортных и отечественных светодиодных ламп множество разновидностей цоколей, тогда как простые лампы ограничиваются тремя.

Если необходимо заменить лампочку в люстре или настольном светильнике, то обязательно обратите внимание на диаметр цоколя – Е14 или Е27. Приборы с цоколем Е40 в быту не применяют

Сейчас производителей обязывают упаковывать каждое изделие в отдельную коробочку, так что технические характеристики можно отыскать на ней. Обычно указывают мощность, класс энергоэффективности (низкий – Е), тип цоколя, прозрачность колбы, срок службы в часах.

Преимущества и недостатки ламп накаливания

Потребитель продолжает приобретать неэкономчные лампочки благодаря целому ряду плюсов, хотя некоторые из них весьма условны. По отзывам, их выбирают из-за следующих качеств:

  • невысокая стоимость;
  • отсутствие пускорегулирующего оборудования;
  • моментальное зажигание после включения;
  • привычный «домашний» свет;
  • отсутствие вредных веществ;
  • нет реакции на низкую температуру и электромагнитные импульсы.

Однако мало кто оценивает качество светового потока или пульсацию, все же для большинства решающим оказывается первый фактор.

Но недостатки гораздо весомее, так как среди них сравнительно низкая световая отдача, ограниченный срок службы, небольшой диапазон цветовой температуры (только желтый свет), зависимость от перепадов напряжения в сети, пожароопасность.

Если включить лампу накаливания мощностью 40 Вт, спустя полчаса она нагревается до +145-148°С и начинает нагревать окружающие предметы, что чревато случайным возгоранием

Сейчас существует возможность сравнить на практике работу ламп накаливания, газоразрядных и светодиодных аналогов. Каждый, кто заметил разницу в энергопотреблении, давно перешел на энергосберегающие устройства.

Как правильно выбрать лампочку

При покупке лампочки ориентируются в первую очередь на величину цоколя и мощность. Эти два параметра легко определить по старому, перегоревшему источнику света.

Если вы выберете устройство меньшей мощности, то световой поток будет слабее, если большей, то рискуете целостностью плафонов – они могут деформироваться из-за высокой температуры нагрева.

Специально для любителей традиционных лампочек выпускаются филаментные устройства на светодиодах, похожие по форме, но выгодно отличающиеся своими характеристиками

Кроме технических характеристик стоит обратить внимание на качество изготовления лампы. Предпочтение стоит отдать изделиям с широким контактом цоколя, пропаянным токопроводом, стабильно закрепленной нитью накала.

Выводы и полезное видео по теме

Еще больше познавательной и интересной информации о производстве, использовании и недостатках ламп накаливания – в видеороликах, снятых специалистами и любителями.

Интересные факты о лампах накаливания:

Как происходит производство ЛН:

Сравнительный обзор ламп разных видов:

Популярно о выборе ламп для дома:

Потребитель сам вправе выбрать лампочку для использования в быту. Однако не стоит гнаться за дешевизной и обманчивой выгодой. Учитывая, что освещением мы пользуемся постоянно, а лампочек в доме, как правило, более десятка, следует пересмотреть привычки. Многие пользователи давно уже перешли на более надежные, экономичные, безопасные светодиодные лампы.

Нагретое электрическим током тело может, оказывается, не только излучать тепло, но и светиться. Первые источники света функционировали именно на этом принципе. Рассмотрим, как работает лампа накаливания – самый массовый осветительный прибор в мире. И, хотя его со временем предстоит полностью заместить на компактные люминесцентные (энергосберегающие) и светодиодные источники света, без этой технологии человечеству еще долго не обойтись.

Конструкция лампы накаливания

Основным элементом лампочки является спираль из тугоплавкого материала – вольфрама. Для увеличения ее длины и, соответственно, сопротивления, она скручена в тонкую спираль. Это не видно невооруженным глазом.

Спираль укреплена на поддерживающих элементах, крайние из которых служат для присоединения ее концов к электрической цепи. Они изготовлены из молибдена, температура плавления которого выше температуры разогретой спирали. Один из молибденовых электродов соединяется с резьбовой частью цоколя, а другой – с его центральным выводом.

Молибденовые держатели удерживают вольфрамовую спираль

Из колбы, сделанной из стекла, выкачан воздух. Иногда внутрь вместо воздуха закачивают инертный газ, например, аргон или его смесь с азотом. Это необходимо для снижения теплопроводности внутреннего объема, в результате чего стекло менее подвержено нагреву. Дополнительно эта мера препятствует окислению нити накала. При изготовлении лампы воздух выкачивается через часть колбы, скрытую затем цоколем.

Принцип работы лампы накаливания основан на разогреве электрическим током ее нити до температуры, при которой она начинает излучать свет в окружающее пространство.

Лампы накаливания можно изготовить на мощность от 15 до 750 Вт. В зависимости от мощности применяются разные типы резьбовых цоколей: Е10, Е14, Е27 или Е40. Для декоративных, сигнальных и ламп подсветки используются цоколи ВА7S, ВА9S, ВА15S. Такие изделия при установке втыкаются внутрь патрона и поворачиваются на 90 градусов.

Помимо обычной, грушеобразной формы, выпускаются и декоративные лампы, у которых колба выполняется в форме свечи, капли, цилиндра, шара.

Лампа с колбой, не имеющей покрытия, светится желтоватым светом, по составу наиболее напоминающим солнечный. Но при нанесении на внутреннюю поверхность стекла специальных покрытий она может стать матовой, красной, желтой, синей или зеленой.

Интерес представляет устройство зеркальной лампы накаливания. На часть ее колбы нанесен отражающий слой. В результате, за счет отражения от него, световой поток перераспределяется в одном направлении.

Достоинства ламп накаливания

Самым важным плюсом в пользу применения лампочек накаливания является простота их изготовления и, соответственно, цена. Проще осветительного прибора придумать невозможно.

Лампы изготавливают на широкий диапазон мощностей и габаритных размеров. Все остальные современные источники света содержат устройства, преобразующие напряжение питания в необходимую для их работы величину. Хотя их и ухитряются впихнуть в стандартные габаритные размеры лампочки, но при этом усложняется конструкция, увеличивается количество деталей в составе устройства. А это не всегда улучшает показатели стоимости и надежности. Схема же включения лампы накаливания не требует никаких дополнительных элементов.

Светодиодные лампы вытеснили обычные из портативных устройств: переносных источников света, питающихся от батареек и аккумуляторов. При той же светоотдаче они потребляют меньший ток, а габаритные размеры светодиода еще меньше, чем лампочек, использующихся ранее в фонариках. Да и в составе елочных гирлянд они работают успешнее.

Стоит отметить еще одно достоинство, присущее лампочкам накаливания – их спектр свечения наиболее близок к солнечному, чем у всех остальных искусственных источников света. А это – большой плюс для зрения, ведь оно адаптировано именно к солнцу, а не монохромным светодиодам.

Из-за тепловой инерции разогретой нити накала свет от нее практически не пульсирует. Чего нельзя сказать об излучении от остальных устройств, особенно люминесцентных, использующих в качестве пускорегулирующего устройства обычный дроссель, а не полупроводниковую схему. Да и электроника, особенно дешевая, не всегда подавляет пульсации от сети должным образом. От этого тоже страдает зрение.

Но не только здоровью может повредить пульсирующий характер работы полупроводниковых устройств, использующихся в современных лампочках. Массовое их применение приводит к резкому изменению формы потребляемого от сети тока, что сказывается в итоге и на форме напряжения. Она настолько изменяется по отношению к изначальной (синусоидальной), что это сказывается на качестве работы других электроприборов в сети.

Недостатки ламп накаливания

Существенный недостаток лампочек накаливания, сокращающий их срок службы – зависимость его от величины питающего напряжения. При повышении напряжения износ нити накала происходит быстрее. Выпускают лампы на разные величины этого параметра (вплоть до 240 В), но при номинальном значении они светят хуже.

Понижение напряжения приводит к резкому изменению интенсивности свечения. А еще хуже воздействуют на осветительный прибор его колебания, при резких скачках лампа может и перегореть.

Но самое худшее – то, что нить накала рассчитана на длительную работу в нагретом состоянии. При нагревании ее удельное сопротивление увеличивается. Поэтому в момент включения, когда нить холодная, ее сопротивление намного меньше того, при котором происходит свечение. Это приводит к неизбежному скачку тока в момент зажигания, приводящему к испарению вольфрама. Чем больше количество включений – тем меньше проживет лампа.

Исправить ситуацию помогают устройства для плавного запуска или , позволяющие регулировать яркость свечения в широких пределах.

Самым главным недостатком лампочек накаливания считается их низкий коэффициент полезного действия. Подавляющая часть электроэнергии (до 96 %) расходуется на бесполезный нагрев окружающего воздуха и излучение в инфракрасном спектре. С этим поделать ничего нельзя – таков принцип действия лампы накаливания.

Ну и еще: стекло колбы легко разбить. Но в отличие от компактных люминесцентных, содержащих внутри небольшое количество паров ртути, разбитая лампа накаливания кроме возможного пореза ничем владельцу не угрожает.

Галогенные лампы

Причиной перегорания лампы накаливания является постепенное испарение фольфрама, из которого сделана нить. Она становится тоньше, а затем очередной скачок тока при включении расплавляет ее в самом тонком месте.

Этот недостаток призваны устранить галогенные лампы, заполняемые парами брома или йода. При горении испаряющийся вольфрам вступает в соединение с галогеном. Получившееся вещество не способно осаждаться на стенках колбы или других, относительно холодных, внутренних поверхностях.

Вблизи же нити накала вольфрам под действием температуры извлекается из соединения и возвращается на место.

Применением галогенов решается еще одна задача: температуру спирали можно поднять, увеличивая световую отдачу и уменьшить размеры осветительного прибора. Поэтому при той же мощности габариты галогенных ламп оказываются меньше.

Щелчок выключателя - и темная комната вмиг преобразилась, стали видны детали мельчайших элементов интерьера. Так мгновенно распространяется энергия от маленького устройства, заливая светом все вокруг. Что же заставляет создавать такое мощное излучение? Ответ сокрыт в названии осветительного прибора, который именуется лампой накаливания.

История создания первых осветительных элементов

Истоки возникновения первых ламп накаливания восходят к началу XIX столетия. Вернее сказать, лампа появилась чуть позже, но эффект свечения платины и угольных стержней под действием электрической энергии уже пытались наблюдать. Перед учеными возникло два сложных вопроса:

  • нахождение материалов высокого сопротивления, способных раскаляться под воздействием тока до состояния излучения света;
  • предотвращение быстрого сгорания материала в воздушной среде.

Наиболее плодотворными в этой области стали исследования и изобретения русского ученого Александра Николаевича Лодыгина и американца Томаса Эдисона.

Лодыгин предложил использовать в качестве элемента накаливания угольные стержни, которые находились в герметичной колбе. Недостатком конструкции была сложность выкачки воздуха, остатки которого способствовали быстрому сгоранию стержней. Но все же его лампы горели несколько часов, а разработки и патенты стали основой для создания более долговечных устройств.

Американский ученый ознакомившись с работами Лодыгина, сделал эффективную вакуумную колбу, в которую поместил угольную нить из бамбукового волокна. Также Эдисон снабдил цоколь лампы резьбовым соединением, присущим современным лампам, и изобрел множество электротехнических элементов, таких как: штепсельный разъем, плавкий предохранитель, поворотный выключатель и многое другое. КПД лампы накаливания Эдисона был маленьким, хотя она могла работать до 1000 часов времени и получила практическое применение.

Впоследствии вместо угольных элементов было предложено использовать тугоплавкие металлы. Нить из в современных лампах накаливания, также была запатентована Лодыгиным.

Устройство и принцип действия лампы

Конструкция лампы накаливания принципиально не изменяется уже более сотни лет. Она включает в себя:

  • Герметичную колбу, ограничивающую рабочее пространство и наполненную инертным газом.
  • Цоколь, который имеет спиральную форму. Он служит для удержания лампы в патроне и электрического соединения ее с токоведущими частями.
  • Проводники, ведущие ток от цоколя к спирали и удерживающие ее.
  • Спираль накаливания, нагревание которой и создает излучение световой энергии.

Когда электрический ток проходит через спираль, она мгновенно нагревается до высочайших температур вплоть до 2700 градусов. Это обусловлено тем, что спираль имеет большое сопротивление току и на преодоление этого сопротивления расходуется много энергии, которая выделяется как тепло. Тепло раскаляет металл (вольфрам), и он начинает излучать фотоны света. Благодаря тому что колба не содержит кислород, в процессе нагрева не происходит окисление вольфрама, и он не перегорает. Инертный газ удерживает частички раскаленного металла от испарения.

Что такое КПД лампы накаливания

Показывает, какой процент затраченной энергии преобразуется в полезную работу, а какой нет. В случае лампы накаливания КПД невелик, так как всего 5-10% энергии идет на излучение света, остальная выделяется в качестве тепла.

КПД первых ламп накаливания, где телом накала выступал угольный стержень, был еще меньшим по сравнению с современными устройствами. Это обусловлено дополнительными потерями на конвекцию. Спиральные нити накала имеют более низкий процент этих потерь.

КПД лампы накаливания напрямую зависит от температуры нагрева спирали. Стандартно спираль лампы 60 Вт нагревается до 2700 ºС, при этом КПД всего 5%. Можно поднять величину нагрева до 3400 ºС, повысив напряжение, но это снизит срок службы устройства более чем на 90%, хотя лампа засветит ярче, и КПД возрастет до 15%.

Неправильно думать, что увеличение мощности лампы (100, 200, 300 Вт) ведет к увеличению КПД только потому, что повысилась яркость устройства. Лампа стала светить ярче за счет большей мощности самой спирали, а вследствие и большей световой отдачи. Но затраты энергии также возросли. Поэтому КПД лампы накаливания 100 Вт будет также в пределах 5-7%.

Разновидности ламп накаливания

Лампы накаливания бывают различного конструктивного исполнения и функционального назначения. Они делятся на осветительные приборы:

  • Общего применения. К ним относятся лампы бытового использования разной мощности, рассчитанные на сетевое напряжение в 220 В.
  • Декоративного исполнения. Имеют нестандартные типы колб в виде свечей, сфер и других форм.
  • Иллюминационного типа. Маломощные лампы с цветным покрытием для создания красочных иллюминаций.
  • Местного назначения. Устройства безопасного напряжения до 40 В. Применяют на производственных столах, для освещения рабочих мест станков.
  • С зеркальным покрытием. Лампы, создающие направленный свет.
  • Сигнального типа. Служат для работы в приборных панелях различных устройств.
  • Для транспорта. Широкая линейка ламп повышенной износостойкости и надежности. Характеризуются удобной конструкцией, предполагающей быструю замену.
  • Для прожекторов. Лампы повышенной мощности, доходящей до 10 000 Вт.
  • Для оптических устройств. Лампы для кинопроекторов и аналогичных устройств.
  • Коммутаторные. Применяемые в качестве сегментов индикатора цифрового отображения измерительных приборов.

Положительные и отрицательные стороны ламп с телом накала

Осветительные устройства накального типа имеют свои особенности. К положительным можно отнести:

  • мгновенный розжиг спирали;
  • экологическую безопасность;
  • небольшие размеры;
  • приемлемую цену;
  • возможность создавать устройства разной мощности и величины рабочего напряжения как переменного, так и постоянного тока;
  • универсальность применения.

К отрицательным:

  • низкий КПД лампы накаливания;
  • чувствительность к скачкам напряжения, снижающим срок эксплуатации;
  • малое время рабочих часов, не превышающих 1000;
  • пожароопасность ламп из-за сильного нагрева колбы;
  • хрупкость конструкции.

Другие типы осветительных приборов

Существуют принцип действия которых в корне отличается от работы ламп накаливания. К ним относятся газоразрядные и светодиодные лампы.

Дуговых или существует большое множество, но все они основаны на свечении газа при возникновении дуги между электродами. Свечение происходит в спектре ультрафиолета, который потом преобразуется в видимый человеческому глазу посредством прохождения через люминофорное покрытие.

Процесс, происходящий в газоразрядной лампе, включают два этапа работы: создание дугового разряда и поддержание ионизации и свечения газа в колбе. Поэтому все типы таких осветительных приборов имеют систему управления током. Устройства люминесцентные имеют более высокий коэффициент полезного действия по сравнению с КПД лампы накаливания, но небезопасны, так как содержат пары ртути.

Светодиодные осветительные устройства являются наиболее современными системами. КПД лампы накаливания и светодиодной лампы несравнимы. У последней оно достигает 90%. Принцип действия светодиода основан на свечении определенного типа полупроводника под воздействием напряжения.

Чего не любит лампа накаливания

Срок службы обычной лампы накаливания будет сокращен, если:

  1. Напряжение в сети постоянно завышено от номинального, на которое рассчитан осветительный прибор. Это связано с увеличением рабочей температуры тела накала и, как следствие, повышенное испарение сплава металла, приводящего к выходу его из строя. Хотя КПД лампы накаливания при этом будет больше.
  2. Резко тряхнуть лампу во время работы. Когда металл раскален до состояния близкого к плавлению, а расстояние между витками спирали уменьшено вследствие расширения вещества, любое механическое, резкое движение может привести к незаметному глазу межвитковому замыканию. Это уменьшает общее сопротивление спирали току, способствует ее большему разогреву и быстрому перегоранию.
  3. Произойдет попадание влаги на разогретую колбу. В месте попадания возникает перепад температур, который производит разрушение стекла.
  4. Дотронуться пальцами до колбы является разновидностью лампы накаливания, но имеет значительно большую световую и тепловую отдачу. При касании на колбе остается невидимое жирное пятно от пальца. Под воздействием температуры жир сгорает, образуя нагар, препятствующий теплоотдаче. В результате этого в месте прикосновения стекло начинает плавиться и может лопнуть или вздуться, нарушая газовый режим внутри, что приводит к перегоранию спирали. Галогенные лампы накаливания КПД имеют выше, чем обыкновенные.

Как заменить лампу

Если лампа перегорела, но не разрушилась колба, то заменить ее можно после полного остывания. При этом следует отключить питание. При вкручивании лампы глаза не нужно направлять в ее сторону, особенно если выключить электричество не представляется возможным.

Когда колба лопнула, но сохранила форму, желательно взять хлопчатобумажную ткань, свернуть в несколько слоев и, обхватив ею лампу, постараться удалить стекло. Далее пассатижами с изолированными ручками аккуратно выкрутить цоколь и вкрутить новую лампу. Все операции необходимо проводить при отключенном напряжении питания.

Заключение

Несмотря на то что КПД лампы накаливания составляет мало процентов и у нее появляется все больше конкурентов, она актуальна во многих сферах жизни. Существует даже самая старая лампочка, непрерывно работающая более ста лет. Это ли не подтверждение и увековечивание гениальности мысли человека, стремящегося изменить мир?