Презентация на тему "Специальная теория относительности. Постулаты теории относительности". Презентация на тему "специальная теория относительности" Постулаты специальной теории относительности эйнштейна презентация

Слайд 2

Домашнее задание № 1

Г.Н. Степанова. Физика-11, ч.1 стр. 130 – Введение § 28 – знать: В чем проявляется относительность механического движения Принцип относительности Галилея Суть и принцип опыта Майкельсона Постулаты СТО § 29 – знать: Смысл и формулы для кинематических следствий СТО Из коллекции www.eduspb.com

Слайд 3

Специальная (или частная) теория относительности (СТО)

представляет собой современную физическую теорию пространства и времени. Наряду с квантовой механикой, СТО служит теоретической базой современной физики и техники. СТО часто называют релятивистской теорией, а специфические явления, описываемые этой теорией, – релятивистскими эффектами. Эти эффекты наиболее отчетливо проявляются при скоростях движения тел, близких к скорости света в вакууме c ≈ 3·108 м/с. Из коллекции www.eduspb.com

Слайд 4

Создатели СТО

Специальная теория относительности была создана А. Эйнштейном (1905 г.). Предшественниками Эйнштейна, очень близко подошедшими к решению проблемы, были нидерландский физик Х. Лоренц и выдающийся французский физик А. Пуанкаре. Значительный вклад внесли Д. Лармор, Д.Фитцджеральд, математик Г. Минковский. Из коллекции www.eduspb.com

Слайд 5

Альберт Эйнштейн (Einstein) (14.III.1879–18.IV.1955)

Физик-теоретик, один из основателей современной физики. Родился в Германии, с 1893 жил в Швейцарии, в 1933 эмигрировал в США. В 1905 вышла в свет его первая серьезная научная работа, посвященная броуновскому движению: «О движении взвешенных в покоящейся жидкости частиц, вытекающем из молекулярно-кинетической теории». В том же году вышла и другая работа Эйнштейна «Об одной эвристической точке зрения на возникновение и превращение света». Вслед за Максом Планком он выдвинул предположение, что свет испускается и поглощается дискретно, и сумел объяснить фотоэффект. Эта работа была удостоена Нобелевской премии (1921). Наибольшую известность Эйнштейну все же принесла теория относительности, изложенная им впервые в 1905 году, в статье «К электродинамике движущихся тел». Из коллекции www.eduspb.com

Слайд 6

Хендрик Антон Лоренц (Lorentz) (18.VII.1853–4.II.1898)

Нидерландский физик-теоретик, создатель классической электронной теории. Работы в области электродинамики, термодинамики, оптики, теории излучения, атомной физики. Исходя из электромагнитной теории Максвелла–Герца и вводя в учение об электричестве атомистику, создал (1880–1909) классическую электронную теорию, основанную на анализе движений дискретных электрических зарядов. Вывел формулу, связывающую диэлектрическую проницаемость с плотностью диэлектрика, и зависимость показателя преломления вещества от его плотности (формула Лоренца–Лоренца), дал выражение для силы, действующей на движущийся заряд в магнитном поле (сила Лоренца), объяснил зависимость электропроводности вещества от теплопроводности, развил теорию дисперсии света. Для объяснения опыта Майкельсона–Морли выдвинул (1892) гипотезу о сокращении размеров тел в направлении их движения (сокращение Лоренца). В 1904 вывел формулы, связывающие между собой пространственные координаты и моменты времени одного и того же события в двух различных инерциальных системах отсчета (преобразования Лоренца). Подготовил переход к теории относительности. Из коллекции www.eduspb.com

Слайд 7

Анри Пуанкаре (Poincare) (29.IV.1854–17.VII.1912)

Французский математик и физик. Основные труды по топологии, теории вероятностей, теории дифференциальных уравнений, теории автоморфных функций, неевклидовой геометрии. Занимался математической физикой, в частности теорией потенциала, теорией теплопроводности, а также решением различных задач по механики и астрономии. В 1905 написал сочинения «О динамике электрона», в которой независимо от А. Эйнштейна развил математические следствия «постулата относительности». Из коллекции www.eduspb.com

Слайд 8

Принцип относительности и преобразования Галилея.

законы динамики одинаковы во всех инерциальных системах отсчета. Этот принцип означает, что законы динамики инвариантны (т. е. неизменны) относительно преобразований Галилея, которые позволяют вычислить координаты движущегося тела в одной инерциальной системе (K), если заданы координаты этого тела в другой инерциальной системе (K"). В частном случае, когда система K" движется со скоростью υ вдоль положительного направления оси x системы K преобразования Галилея имеют вид: x = x" + υxt, y = y", z = z", t = t". В начальный момент оси координат обеих систем совпадают. Из коллекции www.eduspb.com

Слайд 9

Следствие преобразований Галилея - закон преобразования скоростей при переходе от одной системы отсчета к другой: υx = υ"x + υ, υy = υ"y, υz = υ"z. Ускорения тела во всех инерциальных системах оказываются одинаковыми. Следовательно, уравнение движения классической механики не меняет своего вида при переходе от одной инерциальной системы к другой. Из коллекции www.eduspb.com

Слайд 10

Постулаты СТО

В основе специальной теории относительности лежат два постулата (или принципа), сформулированные Эйнштейном в 1905 г. Эти принципы являются обобщением всей совокупности опытных фактов. Из коллекции www.eduspb.com

Слайд 11

Принцип относительности Эйнштейна:

все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой. Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Из коллекции www.eduspb.com

Слайд 12

Принцип постоянства скорости света:

скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую. Из коллекции www.eduspb.com

Слайд 13

Принцип соответствия Н.Бора

новая теория (СТО) не отвергла старую классическую механику Ньютона, а только уточнила пределы ее применимости. Такая взаимосвязь между старой и новой, более общей теорией, включающей старую теорию как предельный случай, носит название принципа соответствия. Из коллекции www.eduspb.com

Слайд 14

Опыты Майкельсона и Морли

Майкельсон (Michelson) Альберт (19.XII.1852–9.V.1931).Американский физик. В 1878–82 и 1924–26 провел измерения скорости света, долгое время остававшиеся непревзойденными по точности. В 1881 экспериментально доказал и совместно с Э. У. Морли (1885–87) подтвердил с большой точностью независимость скорости света от скорости движения Земли. Морли (Morley) Эдвард Уильямс (29.I.1839–1923) Американский физик. Наибольшую известность получили его работы в области интерферометрии, выполненные совместно с Майкельсоном. В химии же высшим достижением Морли было точное сравнение атомных масс элементов с массой атома водорода, за которое ученый был удостоен наград нескольких научных обществ. Из коллекции www.eduspb.com

Слайд 15

Принцип опыта

Цель опыта – измерить скорость света относительно «эфирного ветра» (параллельно и перпендикулярно движению Земли). Упрощенная схема интерференционного опыта Майкельсона–Морли. (υ – орбитальная скорость Земли). Из коллекции www.eduspb.com

Слайд 16

Идея опыта

Наблюдение смещения интерференционных полос. Из коллекции www.eduspb.com

Слайд 17

Преобразования Лоренца

Кинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики. Для случая, когда система K" движется относительно K со скоростью υ вдоль оси x, преобразования Лоренца имеют вид: Из коллекции www.eduspb.com

Слайд 18

Относительность одновременности

события, являющиеся одновременными в одной ИСО, неодновременны в другой ИСО, движущейся относительно первой Из коллекции www.eduspb.com

Слайд 19

Относительность промежутков времени.

Моменты наступлений событий в системе K" фиксируются по одним и тем же часам C, а в системе K – по двум синхронизованным пространственно-разнесенным часам C1 и C2. Система K" движется со скоростью υ в положительном направлении оси x системы K. Из коллекции www.eduspb.com

Слайд 20

Из коллекции www.eduspb.com

Слайд 21

Пример

если космонавты отправляются к звездной системе (и обратно), находящейся на расстоянии 500 световых лет от Земли, со скоростью v=0,9999c, то на это потребуется по их часам 14,1 года; в то время как на Земле пройдет 10 веков Из коллекции www.eduspb.com

Слайд 22

Относительностьрасстояний

Измерение длины движущегося стержня Из коллекции www.eduspb.com

Слайд 23

Из коллекции www.eduspb.com

Слайд 24

Домашнее задание № 2

Г.Н. Степанова. Физика-11, ч.1 § 30, 31 – знать: Формулу сложения скоростей и ее смысл. Формулу релятивистского импульса Формулы полной энергии и энергии покоя Связь энергии и импульса Понимать задачи и границы применимости СТО, принцип соответствия В помощь: Таблица «Подведем итоги» на стр. 146. Из коллекции www.eduspb.com

Слайд 25

Сложение скоростей

Эти соотношения выражают релятивистский закон сложения скоростей для случая, когда частица движется параллельно относительной скорости систем отсчета K и K". ux = u"x + υ, uy = 0, uz = 0. При υ

Слайд 26

В любом случае выполняется условие ux ≤ с. Например, пусть u’x = с и υ= c. Тогда: Если в системе K" вдоль оси x" распространяется со скоростью u"x = c световой импульс, то для скорости ux импульса в системе K получим Из коллекции www.eduspb.com

Слайд 27

Импульс в СТО

Уравнения классической механики Ньютона оказались неинвариантными относительно преобразований Лоренца, и поэтому СТО потребовала пересмотра и уточнения законов механики. В основу такого пересмотра Эйнштейн положил требования выполнимости закона сохранения импульса и закона сохранения энергии в замкнутых системах. Для этого оказалось необходимым изменить определение импульса тела. Релятивистский импульс тела с массой m, движущегося со скоростью записывается в виде Из коллекции www.eduspb.com

Слайд 28

Масса в СТО

Масса m, входящая в выражение для импульса, есть фундаментальная характеристика частицы, не зависящая от выбора инерциальной системы отсчета, а, следовательно, и от скорости ее движения. (Во многих учебниках прошлых лет ее было принято обозначать буквой m0 и называть массой покоя. Кроме того, вводилась так называемая релятивистская масса, зависящая от скорости движения тела. Современная физика постепенно отказывается от этой терминологии). Из коллекции www.eduspb.com

Слайд 29

Динамика СТО

Основной закон релятивистской динамики материальной точки записывается так же, как и второй закон Ньютона, нотолько в СТО под понимается релятивистский импульс частицы: Следовательно Из коллекции www.eduspb.com

Слайд 30

Энергия в СТО

Вычисление кинетической энергии приводит к следующему выражению: Эйнштейн интерпретировал первый член в правой части этого выражения как полную энергию E движущийся частицы, а второй член как энергию покоя. Из коллекции www.eduspb.com

Слайд 31

Зависимость кинетической энергии от скорости

Зависимость кинетической энергии от скорости для релятивистской (a) и классической (b) частиц. При υ

Слайд 32

Связь массы и энергии

Утверждение о том, что находящаяся в покое масса m содержит огромный запас энергии получило разнообразные практические применения, включая использование ядерной энергии. Если масса частицы или системы частиц уменьшилась на Δm, то при этом должна выделиться энергия ΔE = Δm·c2. Многочисленные прямые эксперименты дают убедительные доказательства существования энергии покоя. Из коллекции www.eduspb.com

Слайд 33

Закон пропорциональности массы и энергии является одним из самых важных выводов СТО. Масса и энергия являются характеристиками материальных объектов. Масса тела характеризует его инертность, а также способность тела вступать в гравитационное взаимодействие с другими телами. Важнейшим свойством энергии является ее способность превращаться из одной формы в другую в эквивалентных количествах при различных физических процессах. Формула Эйнштейна выражает фундаментальный закон природы, который принято называть законом взаимосвязи массы и энергии. Из коллекции www.eduspb.com

Слайд 34

Связь энергии и импульса

Отсюда следует, что для покоящихся частиц (p = 0) E = E0 = mc2. Между полной энергией, энергией покоя и импульсом существует следующая связь: . Из коллекции www.eduspb.com

Слайд 35

Безмассовые частицы

Т.о. частица может иметь энергию и импульс, но не иметь массы (m = 0). Такие частицы называются безмассовыми. Для безмассовых частиц связь между энергией и импульсом выражается простым соотношением Е = pc. К безмассовым частицам относятся фотоны – кванты электромагнитного излучения и, возможно, нейтрино. Безмассовые частицы не могут существовать в состоянии покоя, во всех инерциальных системах отсчета они движутся с предельной скоростью c. Из коллекции www.eduspb.com

Опыты по наблюдению спектра водорода, находящегося в спектральной трубке, выполнялись дважды. Первый раз на Земле, второй раз в космическом корабле, движущемся относительно Земли с постоянной скоростью. Наблюдаемые спектры одинаковы существенно различны сходны, но все спектральные линии сдвинуты друг относительно друга Из коллекции www.eduspb.com

Слайд 40

Задание 4

Рассчитайте отношение времени τ в системе отсчета, движущейся со скоростью υ = 1,5∙108 м/с относительно лабораторной системы отсчета, к собственному времени τ0. Из коллекции www.eduspb.com

Слайд 41

Задание 5

Найдите скорость υ частицы, которой потребовалось бы на 2 года больше, чем световому импульсу, чтобы пройти расстояние в 6,0 световых лет до далекой звезды. Скорость частицы выразите в долях скорости света c. Из коллекции www.eduspb.com

Посмотреть все слайды

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Специальная теория относительности. Постулаты теории относительности Урок в 11 классе. Подготовила учитель МБОУ СОШ с. Никифарово Ишназарова А.Р.

СТО Специальная теория относительности (СТО) - теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности. Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами, а скорости, при которых такие эффекты становятся существенными, - релятивистскими скоростями.

Из истории СТО. Специальная теория относительности была разработана в начале XX века усилиями Г. А. Лоренца, А. Пуанкаре, А. Эйнштейна и других учёных. Экспериментальной основой для создания СТО послужил опыт Майкельсона. Его результаты оказались неожиданными для классической физики своего времени: независимость скорости света от направления (изотропность) и орбитального движения Земли вокруг Солнца. Попытка интерпретировать этот результат в начале XX века вылилась в пересмотр классических представлений, и привела к созданию специальной теории относительности.

Г.А. Лоренц А. Эйнштейн

При движении с околосветовыми скоростями видоизменяются законы динамики. Второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован при скоростях тел, близких к скорости света. Кроме этого, выражение для импульса и кинетической энергии тела имеет более сложную зависимость от скорости, чем в нерелятивистском случае.

Основные понятия СТО. Система отсчёта представляет собой некоторое материальное тело, выбираемое в качестве начала этой системы, способ определения положения объектов относительно начала системы отсчёта и способ измерения времени. Обычно различают системы отсчёта и системы координат. Добавление процедуры измерения времени к системе координат «превращает» её в систему отсчёта. Инерциальная система отсчёта (ИСО) - это такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно. Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется координатами (x, y, z) и моментом времени t.

Обычно рассматриваются две инерциальные системы S и S". Время и координаты некоторого события, измеренные относительно системы S обозначаются как (t, x, y, z), а координаты и время этого же события, измеренные относительно системы S", как (t", x", y", z"). Удобно считать, что координатные оси систем параллельны друг другу и система S" движется вдоль оси x системы S со скоростью v. Одной из задач СТО является поиск соотношений, связывающих (t", x", y", z") и (t, x, y, z), которые называются преобразованиями Лоренца.

1 принцип относительности. Все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой (протекают одинаково во всех инерциальных системах отсчета). Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы природы, в том числе и на электромагнитные. Этот обобщенный принцип называют принципом относительности Эйнштейна.

2 принцип относительности. Скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую.

СТО. СТО позволила разрешить все проблемы «доэйнштейновской» физики и объяснить «противоречивые» результаты известных к тому времени экспериментов в области электродинамики и оптики. В последующее время СТО была подкреплена экспериментальными данными, полученными при изучении движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п.

Пример. В момент времени t = 0, когда координатные оси двух инерциальных систем K и K" совпадают, в общем начале координат произошла кратковременная вспышка света. За время t системы сместятся относительно друг друга на расстояние υt, а сферический волновой фронт в каждой системе будет иметь радиус ct, так как системы равноправны и в каждой из них скорость света равна c. С точки зрения наблюдателя в системе K центр сферы находится в точке O, а с точки зрения наблюдателя в системе K" он будет находиться в точке O".

Объяснение противоречий. На смену галилеевых преобразований СТО предложила другие формулы преобразования при переходе из одной инерциальной системы в другую – так называемые преобразования Лоренца, которые при скоростях движения, близких к скорости света, позволяют объяснить все релятивисткие эффекты, а при малых скоростях (υ



Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
СТОН.В. Брендина ИСО – это система отсчёта, относительно которой свободное тело движется прямолинейно и равномерно или покоится.Абстракция, идеальный объект, объект науки, средство описания явлений.В природе нет.Инерциальная система отсчёта Событие – это любое физическое явление, происходящее в определённой точке пространства относительно любой ИСО в какой-то момент времени.Абстракция, идеальное понятиеСобытие Постулат – исходное положение, утверждение, принимаемое без строгого доказательства, но обоснованное, например, экспериментами.Постулат Собственная ИСО – это система отсчёта, относительно которой тело покоится.Время движения тела, измеренное в такой системе, - собственное время.Масса тела, измеренная в такой системе, - масса покоя.Собственная инерциальная система отсчёта Инвариант– величина, независимая от выбора ИСО.(скорость света – инвариант, событие – инвариант)Инвариант В любом списке самых значимых людей века этот человек присутствовал обязательно Один из основателей современной теоретической физики, лауреат Нобелевской премии по физике 1921 года Жил в Германии (1879-1893, 1914-1933), Швейцарии (1893-1914) иСША (1933-1955). С шести лет начал заниматься игрой на скрипке, а в гимназии он не был в числе первых учеников Закончив Политехникум, получил диплом преподавателя математики и физики. Работал в Бюро патентов, занимаясь преимущественно экспертной оценкой заявок на изобретения Свою общую теорию относительности закончил в 1915 году, но мировая известность пришла к нему только в 1919 году Был убеждённым демократическим социалистом, гуманистом, пацифистом и антифашистом План. 1.Классические представления о пространстве и времени. 2.Зарождение новой механики. 3.Постулаты теории относительности. 4.Основные следствия постулатов теории относительности. 5.Масса и энергия в специальной теории относительности. 6.Применение теории относительности. 1. Классические представления о пространстве и времениПринцип относительности Г. Галилея (17 в)Все механические явления при равных начальных условиях протекают одинаково во всех инерциальных системахВсе ИСО эквивалентны с точки зрения механических явленийНикакими механическими способами невозможно установить, пребывает ИСО в состоянии покоя или движется равномерно и прямолинейно Закон Галилея о сложении скоростей ʋ= ʋˈ+ ʋₒ1. Классические представления о пространстве и времени Исаак Ньютон обобщил открытия Галилея (2 закона) добавил третий закон и выдвинул гипотезу о взаимном притяжении Классическая механикаДлина тел одинакова в любой ИСОВремя в различных СО течёт одинаковоМасса тела не зависит от скорости и не изменяется при переходе из одной ИСО в другуюПространство и время абсолютныС. Я Маршак писал: Был мир глубокой тьмой окутан. Да будет свет! И вот явился Ньютон! 1. Классические представления о пространстве и времени Продолжение стихотворения С.Я. Маршака: Недолго ждал реванша сатана Пришел Эйнштейн – все стало как всегда. 1881 г. американские ученые А. Майкельсон и Э. Морли сравнивали скорость света в направлении движения Земли и в перпендикулярном направлении. В обоих случаях скорость света оказалась равной с=3*108 м/с, что противоречило классическому правилу сложения скоростей. Вывод: скорость электромагнитных волн в вакууме постоянна и конечна вне зависимости от выбора ИСО. Закон сложения скоростей не работает?2. Зарождение новой механики Научная проблема:Справедлив ли принцип относительности Галилея?(как согласовать между собой принципы механики и закономерности электродинамики?)Способы разрешенияПринцип относительностинеприменимк электромагнитным явлениямУравнения Максвелла неправильныОтказ от классических представлений о пространстве и времениИзменить их так, чтобы при переходе из 1 СО в другую не менялисьИзменить законы Ньютона 3. Постулаты теории относительностиОбобщил принцип относительности Галилея на все физические процессы и объединил его с постулатом о постоянстве скорости света1905 г. “ К электродинамике движущихся тел ”. I постулат: Принцип относительности: во всех инерциальных системах отсчета все физические явления (все процессы природы) протекают одинаково. Этот постулат - обобщение принципа относительности Ньютона не только на законы механики, но и на законы остальной физики.II постулат: Принцип постоянства скорости света: скорость света в вакууме является предельной скоростью любого взаимодействия и не зависит от скорости источника и приемника светового сигнала.Специальная теория относительности классическая механика, изучает движение макроскопических тел с малыми скоростями (ʋ < < c); релятивистская механика, изучает движение макроскопических тел с большими скоростями (ʋ < c); квантовая механика, изучает движение микроскопических тел с малыми скоростями (ʋ < < c); релятивистская квантовая физика, изучает движение микроскопических тел с произвольными скоростями (ʋ ? c). 1. Относительность одновременности. События, одновременные в одной инерциальной системе отсчета, не одновременны в других инерциальных системах отсчета, движущихся относительно первой. 2. Относительность длины (расстояний). Длина не является абсолютной величиной, а зависит от скорости движения тела относительно данной системы отсчёта. Уменьшение длины в направлении движения (релятивистский эффект сокращения длины)3. Относительность промежутка времениДлительность одного и того же процесса различна в различных инерциальных системах отсчета. (Релятивистский эффект замедления времени)τ =4.Основные следствия постулатов теории относительности 4. Релятивистский закон сложения скоростей. Свойство закона сложения скоростей: при любых скоростях тела и системы отсчета (не больше скорости света в вакууме), результирующая скорость не превышает с. Движение реальных тел со скоростью больше с невозможно.Для малых скоростей получаем классический закон сложения скоростей 4.Основные следствия постулатов теории относительности 5. Масса и энергия в специальной теории относительностиМасса движущегося тела возрастает при увеличении скорости его движенияm =Е = mс 2Массовая частица обладает энергиейс 2Е =В системе отсчёта, в которой тело покоится, его энергия = энергия покояЕ = m0с 2 Импульс и энергия в специальной теории относительностиЕ2 = с 2р2+ с 4 m 2Справедливо во всех ИСО - ивариантр =Релятивистская энергия – собственная энергия частицы и релятивистская кинетическая энергияЕ = m с 2 + Е к Принцип соответствияЛюбая теория должна включать предыдущую как предельный случайПри скоростях движения тела, меньших скорости света, формулы СТО переходят в классическиеВывод: теория относительности не отвергает законов классической механики, она их уточняет для скоростей, близких к скорости света В астрономии: 1. Эйнштейн утверждал, что во время прохождения света вблизи больших масс должно наблюдаться искривление лучей. Это было подтверждено в 1919 г. Во время полного солнечного затмения участники Международной экспедиции сфотографировали звездное небо во время затмения. Сравнивая эти фотографии с фотографиями того же участка неба, но без Солнца, ученые обнаружили, что звезды сместились. Это результат смещения световых лучей от звезд при прохождении их вблизи Солнца. 2. Часы идут медленнее вблизи массивных тел. 3. Доказано, что во время движения планет вокруг Солнца плоскости их орбит поворачиваются. 4. В астрономии было открыто явление удаления галактик, причем скорость удаления пропорциональна расстоянию от галактики до наблюдателя. Это открытие согласовано с выводами теории относительности о зависимости длины волны от скорости. 6.Применение теории относительности













Включить эффекты

1 из 13

Отключить эффекты

Смотреть похожие

Код для вставки

ВКонтакте

Одноклассники

Телеграм

Рецензии

Добавить свою рецензию


Слайд 1

Урок в 11 классе. Подготовила учитель МБОУ СОШ с. Никифарово Ишназарова А.Р.

Слайд 2

СТО

Специальная теория относительности (СТО) - теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности. Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами, а скорости, при которых такие эффекты становятся существенными, - релятивистскими скоростями.

Слайд 3

Из истории СТО.

Специальная теория относительности была разработана в начале XX века усилиями Г. А. Лоренца, А. Пуанкаре, А. Эйнштейна и других учёных. Экспериментальной основой для создания СТО послужил опыт Майкельсона. Его результаты оказались неожиданными для классической физики своего времени: независимость скорости света от направления (изотропность) и орбитального движения Земли вокруг Солнца. Попытка интерпретировать этот результат в начале XX века вылилась в пересмотр классических представлений, и привела к созданию специальной теории относительности.

Слайд 4

Г.А. Лоренц

А. Эйнштейн

Слайд 5

При движении соколосветовыми скоростями видоизменяются законы динамики. Второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован при скоростях тел, близких к скорости света. Кроме этого, выражение для импульса и кинетической энергии тела имеет более сложную зависимость от скорости, чем в нерелятивистском случае.

Слайд 6

Основные понятия СТО.

Система отсчёта представляет собой некоторое материальное тело, выбираемое в качестве начала этой системы, способ определения положения объектов относительно начала системы отсчёта и способ измерения времени. Обычно различают системы отсчёта и системы координат. Добавление процедуры измерения времени к системе координат «превращает» её в систему отсчёта. Инерциальная система отсчёта (ИСО) - это такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно. Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется координатами (x, y, z) и моментом времени t.

Слайд 7

Слайд 8

1 принцип относительности.

Все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой (протекают одинаково во всех инерциальных системах отсчета). Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы природы, в том числе и на электромагнитные. Этот обобщенный принцип называют принципом относительности Эйнштейна.

Слайд 9

2 принцип относительности.

Скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую.

Слайд 10

СТО.

СТО позволила разрешить все проблемы «доэйнштейновской» физики и объяснить «противоречивые» результаты известных к тому времени экспериментов в области электродинамики и оптики. В последующее время СТО была подкреплена экспериментальными данными, полученными при изучении движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п.

Слайд 11

Пример.

В момент времени t = 0, когда координатные оси двух инерциальных систем K и K" совпадают, в общем начале координат произошла кратковременная вспышка света. За время t системы сместятся относительно друг друга на расстояние υt, а сферический волновой фронт в каждой системе будет иметь радиус ct, так как системы равноправны и в каждой из них скорость света равна c. С точки зрения наблюдателя в системе K центр сферы находится в точке O, а с точки зрения наблюдателя в системе K" он будет находиться в точке O".

Слайд 12

Объяснение противоречий.

На смену галилеевых преобразований СТО предложила другие формулы преобразования при переходе из одной инерциальной системы в другую – так называемые преобразования Лоренца, которые при скоростях движения, близких к скорости света, позволяют объяснить все релятивисткие эффекты, а при малых скоростях (υ

Слайд 13

Домашнее задание.

Посмотреть все слайды

Конспект

Цели урока:

План урока:

Организационный момент.

Подведение итогов контрольной работы по теме: Световые волны.

Объяснение новой темы.

Определение СТО.

Из истории.

Основные понятия.

1 принцип относительности.

2 принцип относительности.

Объяснение противоречий.

Домашнее задание.

Технические средства учебы : компьютер, проектор.

Ход урока.

Организационный момент.

2. Подведение итогов контрольной работы по теме «Световые волны».

3. Новая тема.

Запись новой темы в тетрадях: «Специальная теория относительности. Постулаты теории относительности». (слайд 1)

Определение СТО . (слайд 2)

Специальная теория относительности (СТО; также частная теория относительности) - теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности.

Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами, а скорости, при которых такие эффекты становятся существенными, - релятивистскими скоростями.

Из истории теории относительности.

Предпосылкой к созданию теории относительности явилось развитие в XIX веке электродинамики. Результатом обобщения и теоретического осмысления экспериментальных фактов и закономерностей в областях электричества и магнетизма стали уравнения Максвелла, описывающие эволюцию электромагнитного поля и его взаимодействие с зарядами и токами. В электродинамике Максвелла скорость распространения электромагнитных волн в вакууме не зависит от скоростей движения как источника этих волн, так и наблюдателя, и равна скорости света. Таким образом, уравнения Максвелла оказались неинвариантными относительно преобразований Галилея, что противоречило классической механике.

Специальная теория относительности была разработана в начале XX века усилиями Г. А. Лоренца, А. Пуанкаре, А. Эйнштейна и других учёных. Экспериментальной основой для создания СТО послужил опыт Майкельсона. Его результаты оказались неожиданными для классической физики своего времени: независимость скорости света от направления (изотропность) и орбитального движения Земли вокруг Солнца. Попытка интерпретировать этот результат в начале XX века вылилась в пересмотр классических представлений, и привела к созданию специальной теории относительности. (слайд 3)

А. Эйнштейн Лоренц Г.А.

Портреты ученных. (слайд 4)

При движении с околосветовыми скоростями видоизменяются законы динамики. Второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован при скоростях тел, близких к скорости света. Кроме этого, выражение для импульса и кинетической энергии тела имеет более сложную зависимость от скорости, чем в нерелятивистском случае. (слайд 5)

Специальная теория относительности получила многочисленные подтверждения на опыте и является верной теорией в своей области применимости.

Фундаментальность специальной теории относительности для физических теорий, построенных на её основе, привела в настоящее время к тому, что сам термин «специальная теория относительности» практически не используется в современных научных статьях, обычно говорят лишь о релятивистской инвариантности отдельной теории.

Основные понятия СТО.

Специальная теория относительности, как и любая другая физическая теория, может быть сформулирована на базе из основных понятий и постулатов (аксиом) плюс правила соответствия её физическим объектам.

Система отсчёта представляет собой некоторое материальное тело, выбираемое в качестве начала этой системы, способ определения положения объектов относительно начала системы отсчёта и способ измерения времени. Обычно различают системы отсчёта и системы координат. Добавление процедуры измерения времени к системе координат «превращает» её в систему отсчёта.

Инерциальная система отсчёта (ИСО) - это такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно.

Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется координатами (x, y, z) и моментом времени t.

Примерами событий являются: вспышка света, положение материальной точки в данный момент времени и т. п.

Обычно рассматриваются две инерциальные системы S и S". Время и координаты некоторого события, измеренные относительно системы S обозначаются как (t, x, y, z), а координаты и время этого же события, измеренные относительно системы S", как (t", x", y", z"). Удобно считать, что координатные оси систем параллельны друг другу и система S" движется вдоль оси x системы S со скоростью v. Одной из задач СТО является поиск соотношений, связывающих (t", x", y", z") и (t, x, y, z), которые называются преобразованиями Лоренца.

Обычно рассматриваются две инерциальные системы S и S". Время и координаты некоторого события, измеренные относительно системы S обозначаются как (t, x, y, z), а координаты и время этого же события, измеренные относительно системы S", как (t", x", y", z"). Удобно считать, что координатные оси систем параллельны друг другу и система S" движется вдоль оси x системы S со скоростью v. Одной из задач СТО является поиск соотношений, связывающих (t", x", y", z") и (t, x, y, z), которые называются преобразованиями Лоренца. (слайд 7)

1 принцип относительности.

Все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой (протекают одинаково во всех инерциальных системах отсчета).

Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы природы, в том числе и на электромагнитные. Этот обобщенный принцип называют принципом относительности Эйнштейна. (слайд 8)

2 принцип относительности.

Скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую. (слайд 9)

Следствия из теории, созданной на основе этих принципов, подтверждались бесконечными опытными проверками. СТО позволила разрешить все проблемы «доэйнштейновской» физики и объяснить «противоречивые» результаты известных к тому времени экспериментов в области электродинамики и оптики. В последующее время СТО была подкреплена экспериментальными данными, полученными при изучении движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п. (слайд 10)

Пример.

Постулаты СТО находятся в явном противоречии с классическими представлениями. Рассмотрим такой мысленный эксперимент: в момент времени t = 0, когда координатные оси двух инерциальных систем K и K" совпадают, в общем начале координат произошла кратковременная вспышка света. За время t системы сместятся относительно друг друга на расстояние υt, а сферический волновой фронт в каждой системе будет иметь радиус ct, так как системы равноправны и в каждой из них скорость света равна c. С точки зрения наблюдателя в системе K центр сферы находится в точке O, а с точки зрения наблюдателя в системе K" он будет находиться в точке O". Следовательно, центр сферического фронта одновременно находится в двух разных точках! (слайд 11)

Объяснение противоречий.

Причина возникающего недоразумения лежит не в противоречии между двумя принципами СТО, а в допущении, что положение фронтов сферических волн для обеих систем относится к одному и тому же моменту времени. Это допущение заключено в формулах преобразования Галилея, согласно которым время в обеих системах течет одинаково: t = t". Следовательно, постулаты Эйнштейна находятся в противоречии не друг с другом, а с формулами преобразования Галилея. Поэтому на смену галилеевых преобразований СТО предложила другие формулы преобразования при переходе из одной инерциальной системы в другую – так называемые преобразования Лоренца, которые при скоростях движения, близких к скорости света, позволяют объяснить все релятивисткие эффекты, а при малых скоростях (υ << c) переходят в формулы преобразования Галилея. Таким образом, новая теория (СТО) не отвергла старую классическую механику Ньютона, а только уточнила пределы ее применимости. Такая взаимосвязь между старой и новой, более общей теорией, включающей старую теорию как предельный случай, носит название принципа соответствия. (слайд 12)

Выучить определения, термины, постулаты.

Спасибо за внимание. (слайд 13)

Тема: Специальная теория относительности. Постулаты теории относительности.

Теория относительности Эйнштейна –

это Акрополь человеческой мысли.

Цели урока: Познакомить учащихся со специальной теорией относительности, ввести основные понятия,раскрыть содержание основных положений СТО, познакомить с выводами СТО и опытными фактами, которые подтверждают их

План урока:

Организационный момент.

Подведение итогов контрольной работы


ПОСТУЛАТ (от лат. postulatum требование), положение (суждение, утверждение), принимаемое в рамках к.-л. науч. теории за истинное в силу очевидности и поэтому играющее в данной теории роль аксиомы (наряду с аксиомами логики). Таковы, напр., галилей-невский принцип относительности и принцип постоянства скорости света в релятивистской механике. суждениеутверждениесуждениеутверждение




Постулаты Эйнштейна Постулаты Эйнштейна В своей работе Эйнштейн без единого нового эксперимента, проанализировав и обобщив уже известные опытные факты, впервые изложил идеи теории относительности, которые коренным образом изменили привычные представления о свойствах пространства и времени. В своей работе Эйнштейн без единого нового эксперимента, проанализировав и обобщив уже известные опытные факты, впервые изложил идеи теории относительности, которые коренным образом изменили привычные представления о свойствах пространства и времени. Теория относительности Эйнштейна состоит из двух частей: частной и общей теории относительности. В 1905 г. Эйнштейн опубликовал основные идеи частной или специальной теории относительности, в которой рассматриваются свойства пространства и времени, справедливые при условиях, когда можно пренебречь тяготением тел, т.е. считать их гравитационные поля "пренебрежимо малыми. Теория относительности, в которой рассматриваются свойства пространства и времени в сильных гравитационных полях, называется общей теорией относительности. Принципы общей теории относительности были изложены Эйнштейном на 10 лет позже, чем частной, в 1915 г. Теория относительности Эйнштейна состоит из двух частей: частной и общей теории относительности. В 1905 г. Эйнштейн опубликовал основные идеи частной или специальной теории относительности, в которой рассматриваются свойства пространства и времени, справедливые при условиях, когда можно пренебречь тяготением тел, т.е. считать их гравитационные поля "пренебрежимо малыми. Теория относительности, в которой рассматриваются свойства пространства и времени в сильных гравитационных полях, называется общей теорией относительности. Принципы общей теории относительности были изложены Эйнштейном на 10 лет позже, чем частной, в 1915 г.


В основу специальной теории относительности Эйнштейна легли два постулата, т.е. утверждения, которые принимаются за истинные в рамках данной научной теории без доказательств (в математике такие утверждения называются аксиомами). В основу специальной теории относительности Эйнштейна легли два постулата, т.е. утверждения, которые принимаются за истинные в рамках данной научной теории без доказательств (в математике такие утверждения называются аксиомами). 1 постулат Эйнштейна или принцип относительности: все законы природы инвариантны по отношению ко всем инерциальным системам отсчета. Все физические, химические, биологические явления протекают во всех инерциальных системах отсчета одинаково. 1 постулат Эйнштейна или принцип относительности: все законы природы инвариантны по отношению ко всем инерциальным системам отсчета. Все физические, химические, биологические явления протекают во всех инерциальных системах отсчета одинаково. 2 постулат или принцип постоянства скорости света: скорость света в вакууме постоянна и одинакова по отношении» к любым инерциальным системам отсчета. Она не зависит ни от скорости источника света, ни от скорости его приемника. Ни один материальный объект не может двигаться со скоростью, превышающей скорость света в вакууме. Более того, пи одна частица вещества, т.е. частица с массой покоя, отличной от нуля, не может достичь скорости света в вакууме, с такой скоростью могут двигаться лишь полевые частицы, т.е. частицы с массой покоя, равной нулю. 2 постулат или принцип постоянства скорости света: скорость света в вакууме постоянна и одинакова по отношении» к любым инерциальным системам отсчета. Она не зависит ни от скорости источника света, ни от скорости его приемника. Ни один материальный объект не может двигаться со скоростью, превышающей скорость света в вакууме. Более того, пи одна частица вещества, т.е. частица с массой покоя, отличной от нуля, не может достичь скорости света в вакууме, с такой скоростью могут двигаться лишь полевые частицы, т.е. частицы с массой покоя, равной нулю.




Работу вы по Анализируя 1 постулат Эйнштейна, мы видим, что Эйнштейн расширил рамки принципа относительности Галилея, распространив его на любые физические явления, в том числе и на электромагнитные. 1 постулат Эйнштейна непосредственно вытекает из опыта Майкельсона-Морли, доказавшего отсутствие в природе абсолютной системы отсчета. Из результатов этого нее опыта следует и 2 постулат Эйнштейна о постоянстве скорости света в вакууме, который тем не менее вступает в противоречие с 1 постулатом, если распространить на электромагнитные явления не только сам принцип относительности Галилея, но и галилейево правило сложения скоростей, вытекающее из галилейе-ва правила преобразования координат (см. п. 10). Следовательно, преобразования Галилея для координат и времени, а также его правило сложения скоростей к электромагнитным явлениям неприменимы Анализируя 1 постулат Эйнштейна, мы видим, что Эйнштейн расширил рамки принципа относительности Галилея, распространив его на любые физические явления, в том числе и на электромагнитные. 1 постулат Эйнштейна непосредственно вытекает из опыта Майкельсона-Морли, доказавшего отсутствие в природе абсолютной системы отсчета. Из результатов этого нее опыта следует и 2 постулат Эйнштейна о постоянстве скорости света в вакууме, который тем не менее вступает в противоречие с 1 постулатом, если распространить на электромагнитные явления не только сам принцип относительности Галилея, но и галилейево правило сложения скоростей, вытекающее из галилейе-ва правила преобразования координат (см. п. 10). Следовательно, преобразования Галилея для координат и времени, а также его правило сложения скоростей к электромагнитным явлениям неприменимы