3 закон геометрической оптики. Геометрическая оптика, границы ее применения. Основной принцип геометрической оптики. Законы геометрической оптики

Геометрическая оптика

Геометри́ческая о́птика - раздел оптики , изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.

Краеугольным приближением геометрической оптики является понятие светового луча . В этом определении подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света.

В силу того, что свет представляет собой волновое явление, имеет место интерференция , в результате которой ограниченный пучок света распространяется не в каком-то одном направлении, а имеет конечное угловое распределение т.е имеет место дифракция . Однако в тех случаях, когда характерные поперечные размеры пучков света достаточно велики по сравнению с длиной волны, можно пренебречь расходимостью пучка света и считать, что он распространяется в одном единственном направлении: вдоль светового луча.

Кроме отсутствия волновых эффектов, в геометрической оптике пренебрегают также квантовыми эффектами. Как правило, скорость распространения света считается бесконечной (вследствие чего динамическая физическая задача превращается в геометрическую), однако учёт конечной скорости света в рамках геометрической оптики (например, в астрофизических приложениях) не представляет трудности. Кроме того, как правило, не рассматриваются эффекты, связанные с откликом среды на прохождение лучей света. Эффекты такого рода, даже формально лежащие в рамках геометрической оптики, относят к нелинейной оптике . В случае, когда интенсивность светового пучка, распространяющегося в данной среде, достаточно мала для того, чтобы можно было пренебречь нелинейными эффектами, геометрическая оптика базируется на общем для всех разделов оптики фундаментальном законе о независимом распространении лучей. Согласно нему лучи при встрече с другими лучами продолжает распространяться в том же направлении, не изменив амплитуды, частоты, фазы и плоскости поляризации электрического вектора световой волны. В этом смысле лучи света не влияют друг на друга и распространяются независимо. Результирующая картина распределения интенсивности поля излучения во времени и пространстве при взаимодействии лучей может быть объяснена явлением интерференции.

Не учитывает геометрическая оптика также и поперечного характера световой волны. Вследствие этого в геометрической оптике не рассматривается поляризация света и связанные с ней эффекты.

Законы геометрической оптики

В основе геометрической оптики лежат несколько простых эмпирических законов:

  1. Закон преломления света (Закон Снелла)
  2. Закон обратимости светового луча. Согласно ему, луч света, распространившийся по определённой траектории в одном направлении, повторит свой ход в точности при распространении и в обратном направлении.

Поскольку геометрическая оптика не учитывает волновой природы света, в ней действует постулат, согласно которому если в какой-то точке сходятся две (или большее количество) систем лучей, то освещённости , создаваемые ими, складываются.

Однако наиболее последовательным является вывод законов геометрической оптики из волновой оптики в эйкональном приближении. В этом случае, основным уравнением геометрической оптики становится уравнение эйконала , которое допускает также словесную интерпретацию в виде принципа Ферма , из которого и выводятся перечисленные выше законы.

Частным видом геометрической оптики является матричная оптика .

Разделы геометрической оптики

Среди разделов геометрической оптики стоит отметить

  • расчёт оптических систем в параксиальном приближении
  • распространение света вне параксиального приближения, формирование каустик и прочих особенностей световых фронтов.
  • распространение света в неоднородных и неизотропных средах (градиентная оптика)
  • распространение света в волноводах и оптоволокне
  • распространение света в гравитационных полях массивных астрофизических объектов, гравитационное линзирование .

История исследований


Wikimedia Foundation . 2010 .

  • Дюнкерк
  • Арамейское письмо

Смотреть что такое "Геометрическая оптика" в других словарях:

    ГЕОМЕТРИЧЕСКАЯ ОПТИКА - раздел оптики, в к ром изучаются законы распространения оптического излучения (света) на основе представлений о световых лучах. Под световым лучом понимают линию, вдоль к рой распространяется поток световой энергии. Понятием луча можно… … Физическая энциклопедия

    ГЕОМЕТРИЧЕСКАЯ ОПТИКА Современная энциклопедия

    Геометрическая оптика - ГЕОМЕТРИЧЕСКАЯ ОПТИКА, раздел оптики, в котором распространение света в прозрачных средах описывается с помощью представления о световых лучах, а волновые и квантовые свойства не учитываются. Основные законы геометрической оптики отражения света… … Иллюстрированный энциклопедический словарь

    ГЕОМЕТРИЧЕСКАЯ ОПТИКА - раздел оптики, в котором распространение света в прозрачных средах рассматривается на основе представления о световом луче как линии, вдоль которой распространяется световая энергия. Законы геометрической оптики применяются для расчетов… … Большой Энциклопедический словарь

    ГЕОМЕТРИЧЕСКАЯ ОПТИКА - раздел физики, в котором изучаются законы распространения (см.) в прозрачных средах на основе его прямолинейного распространения в однородной среде, отражения и преломления. Результаты, к которым приводит Г. о., часто бывают достаточными и… … Большая политехническая энциклопедия

    геометрическая оптика - geometrinė optika statusas T sritis fizika atitikmenys: angl. geometrical optics; ray optics vok. geometrische Optik, f; Strahlenoptik, f rus. геометрическая оптика, f; лучевая оптика, f pranc. optique géométrique, f … Fizikos terminų žodynas

    геометрическая оптика - раздел оптики, в котором распространение света в прозрачных средах рассматривается на основе представления о световом луче как линии, вдоль которой распространяется световая энергия. Законы геометрической оптики применяются для расчётов… … Энциклопедический словарь

    Геометрическая оптика - раздел оптики (См. Оптика), в котором изучаются законы распространения света на основе представлений о световых лучах. Под световым лучом понимают линию, вдоль которой распространяется поток световой энергии. Понятие луча не противоречит… … Большая советская энциклопедия

    геометрическая оптика - ▲ распространение луч света преломление. лучепреломление. преломить, ся. аберрация. астигматизм. дисторсия. кома. каустика, каустическая поверхность. фокус. фокальный. диоптрия. диоптрика. увеличительный (# линза). < > уменьшительный.… … Идеографический словарь русского языка

    ГЕОМЕТРИЧЕСКАЯ ОПТИКА - раздел оптики, в к ром законы распространения света в прозрачных средах рассматриваются на основе представлений о световых лучах линиях, вдоль к рых распространяется световая энергия. Г. о. предельный случай волновой оптики при Лямбда > 0, где… … Большой энциклопедический политехнический словарь

Все законы геометрической оптики следуют из закона сохранения энергии. Все эти законы не являются независимыми друг от друга.

4.3.1. Закон независимого распространения лучей

Если через точку пространства проходит несколько лучей, то каждый луч ведет себя так, как если бы других лучей не было

Это справедливо для линейной оптики, где показатель преломления не зависит от амплитуды и интенсивности проходящего света.

4.3.2. Закон обратимости

Траектория и длина хода лучей не зависят от направления распространения.

То есть, если луч, который распространяется от точки до точки , пустить в обратном ходе (от к ), то он будет иметь такую же траекторию, как и в прямом.

4.3.3. Закон прямолинейного распространения

В однородной среде лучи - прямые линии (см. параграф 4.2.1).

4.3.4. Закон преломления и отражения

Закон отражения и преломления подробно рассматривается в Главе 3. В рамках геометрической оптики формулировки законов преломления и отражения сохраняются.

4.3.5. Принцип таутохронизма


Рис.4.3.1. Принцип таутохронизма.

Рассмотрим распространение света, как распространение волновых фронтов (рис.4.3.1).

Оптическая длина любого луча между двумя волновыми фронтами одна и та же:

(4.3.1)

Волновые фронты - поверхности, которые оптически параллельны друг другу. Это справедливо и для распространения волновых фронтов в неоднородных средах

4.3.6. Принцип Ферма

Пусть имеются две точки и , расположенные, возможно, в различных средах. Эти точки можно соединить между собой различными линиями. Среди этих линий будет только одна, которая будет являться оптическим лучом, который распространяется в соответствии с законами геометрической оптики (рис.4.3.2).

Рис.4.3.2. Принцип Ферма.

Принцип Ферма:

Оптическая длина луча между двумя точками минимальна по сравнению со всеми другими линиями, соединяющими эти две точки:

(4.3.2)

Существует более полная формулировка:

Оптическая длина луча между двумя точками является стационарной по отношению к смещению этой линии.

Луч - кратчайшее расстояние между двумя точками. Если линия, вдоль которой мы измеряем расстояние между двумя точками, отличается от луча на величину 1-го порядка малости, то оптическая длина этой линии отличается от оптической длины луча на величину 2-го порядка малости.

Если оптическую длину луча, соединяющего две точки, поделить на скорость света, то получим время, необходимое на преодоление расстояния между двумя точками:

Еще одна формулировка принципа Ферма:

Луч, соединяющий две точки, идет по такому пути, который требует наименьшего времени (по самому быстрому пути).

Из этого принципа могут быть выведены законы преломления, отражения и т.д.

4.3.7 Закон Малюса-Дюпена

Нормальная конгруэнция сохраняет свойства нормальной конгруэнции в процессе прохождения через различные среды.

4.3.8 Инварианты

Инварианты (от слова неизменный) - это соотношения, выражения, которые сохраняют свой вид при изменении каких-либо условий, например, при прохождении света через различные среды или системы.

Интегральный инвариант Лагранжа

Пусть имеется некоторая нормальная конгруэнция (пучок лучей), и две произвольные точки в пространстве и (рис.4.3.4). Соединим эти две точки произвольной линией и найдем криволинейный интеграл.

(4.3.4)
Криволинейный интеграл (4.3.3), взятый между двумя любыми точками и не зависит от пути интегрирования.

Рис.4.3.3. Интегральный инвариант Лагранжа.

Дифференциальный инвариант Лагранжа

Луч в пространстве полностью описывается радиус-вектором , который содержит три линейные координаты , и оптическим вектором , который содержит три угловые координаты . Всего, таким образом, имеется 6 параметров для определения некоторого луча в пространстве. Однако из этих 6 параметров только 4 являются независимыми, так как можно получить два уравнения, которые связывают параметры луча друг с другом.

Первое уравнение определяется длину оптического вектора:

Где - показатель преломления среды.

Второе уравнение вытекает из условия ортогональности векторов и :

Из выражений (4.3.5) и (4.3.6), воспользовавшись аналитической геометрией, можно вывести следующее соотношение:

(4.3.7)
где и - это пара любых из 6-ти параметров луча.

Дифференциальный инвариант Лагранжа:
Величина сохраняет свое значение для данного луча при распространении пучка лучей через любую совокупность оптических сред.

Геометрический фактор остается инвариантным при распространении лучевой трубки через любую последовательность различных сред (рис.4.3.5).

Инвариант Штраубеля выражает закон сохранения энергии, так как он показывает неизменность лучистого потока.

Из определения яркости можно получить следующее равенство:

(4.3.9) где - приведенная яркость, которая инвариантна, как уже было сказано в главе 2.

Глава 3. Оптика

Оптика – раздел физики, изучающий свойства и физическую природу света, а также его взаимодействие с веществом. Учение о свете принято делить на три части:

  • геометрическая или лучевая оптика , в основе которой лежит представление о световых лучах;
  • волновая оптика , изучающая явления, в которых проявляются волновые свойства света;
  • квантовая оптика , изучающая взаимодействие света с веществом, при котором проявляются корпускулярные свойства света.

В настоящей главе рассматриваются две первые части оптики. Корпускулярные свойства света будут рассматриваться в гл. V.

Геометрическая оптика

Основные законы геометрической оптики

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света : в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при λ → 0. Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения ). Угол отражения γ равен углу падения α.

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:

Рис 3.1.1 иллюстрирует законы отражения и преломления света.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотную n 2 < n 1 (например, из стекла в воздух) можно наблюдать явление полного отражения , то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол α пр, который называется предельным углом полного внутреннего отражения (см. рис. 3.1.2).

Для угла падения α = α пр sin β = 1; значение sin α пр = n 2 / n 1 < 1.

Если второй средой является воздух (n 2 ≈ 1), то формулу удобно переписать в виде

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой .

Зеркала

Простейшим оптическим устройством, способным создавать изображение предмета, является плоское зеркало . Изображение предмета, даваемое плоским зеркалом, формируется за счет лучей, отраженных от зеркальной поверхности. Это изображение является мнимым, так как оно образуется пересечением не самих отраженных лучей, а их продолжений в «зазеркалье» (рис 3.2.1).

Вследствие закона отражения света мнимое изображение предмета располагается симметрично относительно зеркальной поверхности. Размер изображения равен размеру самого предмета.

Сферическим зеркалом называют зеркально отражающую поверхность, имеющую форму сферического сегмента. Центр сферы, из которой вырезан сегмент, называют оптическим центром зеркала . Вершину сферического сегмента называют полюсом . Прямая, проходящая через оптический центр и полюс зеркала, называется главной оптической осью сферического зеркала. Главная оптическая ось выделена из всех других прямых, проходящих через оптический центр, только тем, что она является осью симметрии зеркала.

Сферические зеркала бывают вогнутыми и выпуклыми . Если на вогнутое сферическое зеркало падает пучок лучей, параллельный главной оптической оси, то после отражения от зеркала лучи пересекутся в точке, которая называется главным фокусом F зеркала. Расстояние от фокуса до полюса зеркала называютфокусным расстоянием и обозначают той же буквой F . У вогнутого сферического зеркала главный фокус действительный. Он расположен посередине между центром и полюсом зеркала (рис 3.2.2).

Следует иметь в виду, что отраженные лучи пересекаются приблизительно в одной точке только в том случае, если падающий параллельный пучок был достаточно узким (так называемый параксиальный пучок ).

Главный фокус выпуклого зеркала является мнимым. Если на выпуклое зеркало падает пучок лучей, параллельных главной оптической оси, то после отражения в фокусе пересекутся не сами лучи, а их продолжения (рис 3.2.3).

Фокусным расстояниям сферических зеркал приписывается определенный знак: для вогнутого зеркала для выпуклого где R – радиус кривизны зеркала.

Изображение какой-либо точки A предмета в сферическом зеркале можно построить с помощью любой пары стандартных лучей:

  • луч AOC , проходящий через оптический центр зеркала; отраженный луч COA идет по той же прямой;
  • луч AFD , идущий через фокус зеркала; отраженный луч идет параллельно главной оптической оси;
  • луч AP , падающий на зеркало в его полюсе; отраженный луч симметричен с падающим относительно главной оптической оси.
  • луч AE , параллельный главной оптической оси; отраженный луч EFA 1 проходит через фокус зеркала.

На рис 3.2.4 перечисленные выше стандартные лучи изображены для случая вогнутого зеркала. Все эти лучи проходят через точку A" , которая является изображением точки A . Все остальные отраженные лучи также проходят через точку A" . Ход лучей, при котором все лучи, вышедшие из одной точки, собираются в другой точке, называется стигматическим . Отрезок A"B" является изображением предмета AB . Аналогичны построения для случая выпуклого зеркала.

Положение изображения и его размер можно также определить с помощью формулы сферического зеркала :

Здесь d – расстояние от предмета до зеркала, f – расстояние от зеркала до изображения. Величины d и f подчиняются определенному правилу знаков:

  • d > 0 и f > 0 – для действительных предметов и изображений;
  • d < 0 и f < 0 – для мнимых предметов и изображений.

Для случая, изображенного на рис 3.2.4, имеем:

F > 0 (зеркало вогнутое); d = 3F > 0 (действительный предмет).

По формуле сферического зеркала получаем: следовательно, изображение действительное.

Если бы на месте вогнутого зеркала стояло выпуклое зеркало с тем же по модулю фокусным расстоянием, мы получили бы следующий результат:

F < 0, d = –3F > 0, – изображение мнимое.

Линейное увеличение сферического зеркала Γ определяется как отношение линейных размеров изображения h " и предмета h .

Величине h " удобно приписывать определенный знак в зависимости от того, является изображение прямым (h" > 0) или перевернутым (h" < 0). Величина h всегда считается положительной. При таком определении линейное увеличение сферического зеркала выражается формулой, которую можно легко получить из рис 3.2.4:

В первом из рассмотренных выше примеров – следовательно, изображение перевернутое, уменьшенное в 2 раза. Во втором примере – изображение прямое, уменьшенное в 4 раза.

Тонкие линзы

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой .

Линзы входят в состав практически всех оптических приборов. Линзы бывают собирающими и рассеивающими . Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше (рис. 3.3.1).

Прямая, проходящая через центры кривизны O 1 и O 2 сферических поверхностей, называется главной оптической осью линзы. В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. Все прямые, проходящие через оптический центр, называютсяпобочными оптическими осями .

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F , которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих – мнимые. Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F" , которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус (рис. 3.3.2). Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначаетcя той же буквой F .

Основное свойство линз – способность давать изображения предметов . Изображения бывают прямыми и перевернутыми , действительными и мнимыми ,увеличенными и уменьшенными .

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Примеры таких построений представлены на рис. 3.3.3 и 3.3.4.

Следует обратить внимание на то, что некоторые из стандартных лучей, использованных на рис. 3.3.3 и 3.3.4 для построения изображений, не проходят через линзу. Эти лучи реально не участвуют в образовании изображения, но они могут быть использованы для построений.

Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы . Если расстояние от предмета до линзы обозначить через d , а расстояние от линзы до изображения через f , то формулу тонкой линзы можно записать в виде:

Формула тонкой линзы аналогична формуле сферического зеркала. Ее можно получить для параксиальных лучей из подобия треугольников на рис. 3.3.3 или 3.3.4.

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.

Величины d и f также подчиняются определенному правилу знаков:
d > 0 и f > 0 – для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;
d < 0 и f < 0 – для мнимых источников и изображений.

Для случая, изображенного на рис. 3.3.3, имеем: F > 0 (линза собирающая), d = 3F > 0 (действительный предмет).

По формуле тонкой линзы получим: следовательно, изображение действительное.

В случае, изображенном на рис. 3.3.4, F < 0 (линза рассеивающая), d = 2|F | > 0 (действительный предмет), то есть изображение мнимое.

В зависимости от положения предмета по отношению к линзе изменяются линейные размеры изображения. Линейным увеличением линзы Γ называют отношение линейных размеров изображения h" и предмета h . Величине h" , как и в случае сферического зеркала, удобно приписывать знаки плюс или минус в зависимости от того, является изображение прямым или перевернутым. Величина h всегда считается положительной. Поэтому для прямых изображений Γ > 0, для перевернутыхΓ < 0. Из подобия треугольников на рис. 3.3.3 и 3.3.4 легко получить формулу для линейного увеличения тонкой линзы:

В рассмотренном примере с собирающей линзой (рис. 3.3.3): d = 3F > 0, следовательно, – изображение перевернутое и уменьшенное в 2 раза.

В примере с рассеивающей линзой (рис. 3.3.4): d = 2|F | > 0, ; следовательно, – изображение прямое и уменьшенное в 3 раза.

Оптическая сила D линзы зависит как от радиусов кривизны R 1 и R 2 ее сферических поверхностей, так и от показателя преломления n материала, из которого изготовлена линза. В курсах оптики доказывается следующая формула:

Радиус кривизны выпуклой поверхности считается положительным, вогнутой – отрицательным. Эта формула используется при изготовлении линз с заданной оптической силой.

Во многих оптических приборах свет последовательно проходит через две или несколько линз. Изображение предмета, даваемое первой линзой, служит предметом (действительным или мнимым) для второй линзы, которая строит второе изображение предмета. Это второе изображение также может быть действительным или мнимым. Расчет оптической системы из двух тонких линз сводится к двукратному применению формулы линзы, при этом расстояние d 2 от первого изображения до второй линзы следует положить равным величине l f 1 , где l – расстояние между линзами. Рассчитанная по формуле линзы величина f 2 определяет положение второго изображения и его характер (f 2 > 0 – действительное изображение, f 2 < 0 – мнимое). Общее линейное увеличение Γ системы из двух линз равно произведению линейных увеличений обеих линз: Γ = Γ 1 · Γ 2 . Если предмет или его изображение находятся в бесконечности, то линейное увеличение утрачивает смысл.

Частным случаем является телескопический ход лучей в системе из двух линз, когда и предмет, и второе изображение находятся на бесконечно больших расстояниях. Телескопический ход лучей реализуется в зрительных трубах – астрономической трубе Кеплера и земной трубе Галилея (см. § 3.5).

Тонкие линзы обладают рядом недостатков, не позволяющих получать высококачественные изображения. Искажения, возникающие при формировании изображения, называются аберрациями . Главные из них – сферическая и хроматическая аберрации. Сферическая аберрация проявляется в том, что в случае широких световых пучков лучи, далекие от оптической оси, пересекают ее не в фокусе. Формула тонкой линзы справедлива только для лучей, близких к оптической оси. Изображение удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается размытым.

Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.

В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.

Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.

Фотоаппарат представляет собой замкнутую светонепроницаемую камеру. Изображение фотографируемых предметов создается на фотопленке системой линз, которая называется объективом . Специальный затвор позволяет открывать объектив на время экспозиции.

Особенностью работы фотоаппарата является то, что на плоской фотопленке должны получаться достаточно резкими изображения предметов, находящихся на разных расстояниях.

В плоскости фотопленки получаются резкими только изображения предметов, находящихся на определенном расстоянии. Наведение на резкость достигается перемещением объектива относительно пленки. Изображения точек, не лежащих в плоскости резкого наведения, получаются размытыми в виде кружков рассеяния. Размер d этих кружков может быть уменьшен путем диафрагмирования объектива, т.е. уменьшения относительного отверстия a / F (рис. 3.3.5). Это приводит к увеличению глубины резкости.


Рисунок 3.3.5. Фотоаппарат

Проекционный аппарат предназначен для получения крупномасштабных изображений. Объектив O проектора фокусирует изображение плоского предмета (диапозитив D ) на удаленном экране Э (рис. 3.3.6). Система линз K , называемая конденсором , предназначена для того, чтобы сконцентрировать свет источника S на диапозитиве. На экране Э создается действительное увеличенное перевернутое изображение. Увеличение проекционного аппарата можно менять, приближая или удаляя экран Э с одновременным изменением расстояния между диапозитивом D и объективом O .


Похожая информация.


Длины волн видимого света лежат в диапазоне 0,4 ….. 0,75 мкм. Геометрическая оптика представляет собой предельный случай волновой оптики при . В геометрической оптике отвлекаются от волновой природы света, это возможно, когда дифракционные эффекты пренебрежимо малы. В геометрической оптике рассматриваются законы распространения света в прозрачных средах на основе представления о свете как совокупности световых лучей - линий, вдоль которых распространяется поток световой энергии. В оптически изотропной среде световые лучи ортогональны к волновым поверхностям и направлены в сторону внешних нормалей к этим поверхностям. В оптически однородной среде лучи прямолинейны. Световой пучок – совокупность световых лучей.

1. Закон прямолинейности распространения света: в оптически однородной среде свет распрстраняется прямолинейно. В неоднородной среде световые лучи искривляются. Путь, по которому распространяется свет в неоднородной среде, может быть найден с помощью вариационного принципа Ферма: свет распространяется по такому пути, для прохождения которого ему требуется минимальное время. Другая формулировка принципа Ферма: свет распространяется по такому пути, оптическая длина которого минимальна. Оптической длиной пути света между двумя точками в неоднородной среде называется величина:

(6.35.11)

где – абсолютный показатель преломления среды, – геометрическая длина пути. В однородной среде .

2. Закон независимости световых лучей (световых воздействий): световые лучи (пучки световых лучей) могут пересекаться, не возмущая друг друга, и распространяться после пересечения независимо друг от друга.

На границе раздела двух оптических сред световые лучи могут отражаться и преломляться.

3. Закон отражения света: луч падающий, луч отраженный и перпендикуляр, проведенный в точке падения к границе раздела двух сред, лежат в одной плоскости, причем угол отражения равен углу падения :

4. Закон преломления: луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела двух сред в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред:

(6.35.12)

где – относительный показатель преломления второй среды относительно первой.

Полное внутренне отражение света. Если свет распространяется из оптически более плотной среды в оптически менее плотную > , то < 1, т.е. угол преломления больше угла падения. Если увеличивать угол падения, то будет увеличиваться угол преломления. И при некотором предельном угле падения (предельном угле), угол преломления станет равным = 90°. При этом интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего. Значение предельного угла определим из выражения (6.35.12), подставив в него 90º:

В основе разработки практически всех оптических приборов и систем лежат законы распространения света. Некоторые из них учитывают двойственную природу света, некоторые - нет. Наиболее общие законы распространения света, не связанные с его природой, рассматриваются именно в геометрической оптике. С этими законами вам и предстоит познакомиться на этом уроке.

Тема: Оптика

Урок: Законы геометрической оптики

Геометрическая оптика является самой древней частью оптики как науки.

Геометрическая оптика - это раздел оптики, в котором рассматривают вопросы распространения света в различных оптических системах (линзах, призмах и т. д.) без рассмотрения вопроса о природе света.

Одним из основных понятий в оптике и, в частности, в геометрической оптике, является понятие луча.

Световой луч - линия, вдоль которой распространяется световая энергия.

Световой луч - это пучок света, толщина которого много меньше расстояния, на которое он распространяется. Такое определение близко, например, к определению материальной точки, которое дается в кинематике.

Первый закон геометрической оптики (Закон о прямолинейном распространении света): в однородной прозрачной среде свет распространяется прямолинейно.

По теореме Ферма: свет распространяется по такому направлению, время распространения по которому будет минимально.

Второй закон геометрической оптики (Законы отражения):

1. Отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром к границе раздела двух сред.

2. Угол падения равен углу отражения (см. Рис. 1).

∟α = ∟β

Рис. 1. Закон отражения

Третий закон геометрической оптики (Закон преломления) (см. Рис. 2)

1. Преломленный луч лежит в одной плоскости с падающим лучом и перпендикуляром, восстановленным в точку падения.

2. Отношение синуса угла падения к синусу угла преломления есть величина, постоянная для данных двух сред, которая называется показателем преломления ( n).

Интенсивность отраженного и преломленного луча зависит от того, какова среда и что собой представляет граница раздела.

Рис. 2. Закон преломления

Физический смысл показателя преломления:

Показатель преломления является относительным, так как измерения проводятся относительно двух сред.

В том случае, если одна из сред - это вакуум:

С - скорость света в вакууме,

n - абсолютный показатель преломления, характеризующий среду относительно вакуума.

Если свет переходит из оптически менее плотной среды в оптически более плотную среду, то скорость света уменьшается.

Оптически более плотная среда - среда, в которой скорость света меньше.

Оптически менее плотная среда - среда, в которой скорость света больше.

Существует предельный угол преломления - наибольший угол падения луча, при котором еще имеет место преломление при переходе луча в менее плотную среду. При углах падения больше предельного происходит полное внутреннее отражение (см. Рис. 3).

Рис. 3. Закон полного внутреннего отражения

Границы применимости геометрической оптики заключаются в том, что необходимо учитывать размер препятствий для света.

Свет характеризуется длиной волны, равной примерно 10 -9 метра

Если препятствия больше длины волны, то можно использовать размеры геометрической оптики.

  1. Физика. 11 класс: Учебник для общеобразоват. учреждений и шк. с углубл. изучением физики: профильный уровень / А.Т. Глазунов, О.Ф. Кабардин, А.Н. Малинин и др. Под ред. А.А. Пинского, О.Ф. Кабардина. Рос. акад. наук, Рос. акад. образования. - М.: Просвещение, 2009.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2005.
  3. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  1. Санкт-Петербургская Школа ().
  2. AYP.ru ().
  3. Техническая и учебно-методическая документація ().

Рымкевич А.П. Физика. Задачник. 10-11 кл. - М.: Дрофа, 2010. - № 1023, 1024, 1042, 1054.

  1. Зная скорость света в вакууме, найдите скорость света в алмазе.
  2. Почему, сидя у костра, мы видим предметы, расположенные напротив, колеблющимися?
  3. Прокомментируйте опыт: положите монетку на стол и поставьте на нее пустую стеклянную банку (см. Рис. 4). Посмотрите на монетку сбоку сквозь стенку банки (или попросите кого-нибудь смотреть на монетку). Налейте воды полную банку и посмотрите вновь сбоку на дно банки. Куда исчезла монетка?