Пункты хромосомной теории. Хромосомная теория наследственности Т. Морган

В 1902 г., вскоре после вторичного открытия законов Менделя, "два генетика - А. Сэттон и Т. Бовери независимо друг от друга обнаружили удивительное сходство между поведением хромосом во время образования половых клеток и оплодотворения и насле-: дованием признаков организма. Они высказали ряд предположений, согласно которым: 1) хромосомы являются носителями наследственных факторов (термин «ген» был введен в обиход только в 1909 г. В.Иогансеном), 2) каждая пара факторов локализована в паре гомологичных хромосом, 3) каждая хромосома несет только по одному специфическому, уникальному фактору, 4) каждая хромосома содержит множество различающихся факторов, посколъку число признаков у любого организма гораздо больше числа его хромосом. Эти идеи заложили основу «хромосомной теории наследственности».

Менделевский закон расщепления можно объяснить особенностями поведения хромосом во время мейоза. При образовании гамет распределение аллелей одной пары гомологичных хромосом происходит независимо от распределения других пар аллелей. Поскольку гаплоидное число хромосом в клетках человека равно 23, возможное число комбинаций в мужских или женских гаметах составляет 223.

Сцепление генов

В 1906 г. В. Бэтсон и Р. Пеннет, скрещивая две расы душистого горошка, различавшихся по двум парам признаков, не обнаружили в F2 расщепления в отношении 9:3:3:1. Признаки оставались в исходных родительских комбинациях. Они назвали это явление притяжением. Генетический анализ, проведенный на плодовой мушке дрозофиле Т. Г. Морганом и его учениками, показал, что основой притяжения генов являются хромосомы. Все гены, находящиеся в одной хромосоме, связаны между собой материальным субстратом хромосомы и в силу этого попадают в одну гамету. Гены, расположенные в одной хромосоме и наследующиеся целой группой, получили название группы сцепления. Явление совместного наследования генов, ограничивающее их свободное комбинирование в мейозе, назвали сцеплением генов.

В одном из экспериментов Т. Г. Морган провел несколько серий возвратного скрещивания между дрозофилой с серым телом и длинными крыльями и дрозофилой, у которой были черное тело и короткие крылья. Серое тело и длинные крылья доминируют. Во рсех сериях Морган получал одни и те же результаты: 41,5% потомков имели серое тело, длинные крылья; 41,5% - черное тело, короткие крылья; 8,5% - серое тело, короткие крылья и 8,5% - черное тело, длинные крылья. Если бы аллели, контролирующие развитие этих признаков, находились в одной и той же паре хромосом (т.е. были полностью сцеплены), в потомстве было бы 50 % мух с серым телом, длинными крыльями и 50% - с черным телом, короткими крыльями. Если бы гены, контролирующие эти признаки, лежали в разных хромосомах (т.е. не были сцеплены), они должны были бы распределяться независимо и давать 25% потомков с серым телом, длинными крыльями; 25% - с серым телом, короткими крыльями; 25% - с черным телом, длинными крыльями и 25% - с черным телом, короткими крыльями. Большинство потомков (83%) повторило исходные родительские фенотипы, что говорило о сцеплении изученных генов. Однако, помимо мух с родительскими фенотипами, появились 17% особей с новыми сочетаниями признаков, свидетельствовавшими о неполном сцеплении. Эти новые фенотипы были названы рекомбинантными, а потомки - рекомбинантами. Появление рекомбинантных сочетаний аллелей у 17% потомков объясняется обменом между гомологичными хромосомами во время мейоза. Это явление получило название кроссинговера. Морган предположил, что кроссинговер (обмен аллелями) происходит в результате разрыва и обмена участками гомологичных хромосом во время образования хиазм. Образование хиазм, которые можно непосредственно наблюдать под микроскопом, является цитологическим подтверждением кроссинговера (как генетического явления).

Процент рекомбинантных потомков, от опыта к опыту, для исследованных признаков оставался постоянной величиной. На этом основании А. Стертевант (ученик и сотрудник Моргана) высказал предположение о линейном расположении генов по хромосоме и показал, что величина кроссинговера (выражаемая в процентах) является функцией расстояния между генами. Чем больше расстояние, тем чаще образуются хиазмы, а следовательно, выше процент рекомбинантов, и, наоборот, чем меньше расстояние между генами, тем меньше процент рекомбинантных потомков.

Таким образом, относительные расстояния между генами можно измерять в процентах кроссинговера между ними. Принято считать, что 1% кроссинговера равен 1 сантиморганиде (в честь Т.Г.Моргана).

Хромосомные карты

Т.Г.Морган и его сотрудники были первыми, кто использовал явление кроссинговера для составления генетических карт хромосом. Генетическая карта - это схема линейного расположения генов, локализованных в одной группе сцепления. Карта хромосомы строится путем перевода частоты рекомбинаций между генами в относительные расстояния на хромосоме, выраженные в морганидах. Например, если частота рекомбинаций между генами А и Б равна2,4%, то это свидетельствует, что они расположены на одной и той же хромосоме на расстоянии 2,4 сантиморганиды друг от друга. Если частота рекомбинаций между генами Б и В составляет 6,6%, то они разделены расстоянием 6,6 сантиморганид. Однако приведенные данные не позволяют определить точную последовательность расположения генов на хромосоме (рис. III.10), и только оценив расстояние между генами А и В (в данном случае 9%), можно уверенно сказать, что ген Б должен находиться между генами А и В.

Рис. III. 10.

Таким образом, с помощью кроссинговера можно определить группу сцепления и места расположения генов относительно друг друга. Факт сцепления свидетельствует, что гены находятся в одной хромосоме. Однако свободное их сочетание еще не доказывает, что они расположены в разных хромосомах. Если частота рекомбинаций составляет 50%, то результаты анализа фенотипа потомков не будут отличаться от результатов анализа расщепления при независимом наследовании генов (см. гл. V). Это может происходить, если исследованные гены расположены на значительном расстоянии друг от друга. Для обозначения генов, находящихся в одной и той же хромосоме, но, возможно, и не сцепленных между собой, используется понятие синтеиии (от греч. syn - вместе + tainia - лента). Понятие синтении отражает, таким образом, материальную непрерывность хромосомы как реального материального объекта и не несет сегрегационного смысла.

Долгое время полагали, что число групп сцеплений у человека равно гаплоидному набору хромосом и составляет 23 группы. В настоящее время доказано, что у человека имеется 25 групп сцепления. 22 группы отождествляют с числом пар аутосомных хромосом (22 пары), Х-хромосома и Y-хромосома рассматриваются как две независимые группы сцепления, и гены, локализованные в ДНК митохондрий, формируют 25-ю группу сцепления.

К настоящему времени для человека получены подробные цитологические карты всех хромосом, включая хромосому митохондрий. В качестве примера приведена карта 1-й (рис. III.11) и X-хромосомы (рис. III.12) человека. Установлена (картирована) точная хромосомная локализация более чем для 6 тысяч генов, что составляет только около 15 % от общего числа генов в геноме. В настоящее время хромосомная теория наследственности, сохраняя и дополняя основные классические представления, отражает современные знания о молекулярной организации хромосом, их функционировании как единой материальной структуры в системе целостного генотипа.

Хромосомная теория наследственности


Формирование хромосомной теории

В 1902—1903 гг. американский цитолог У. Сеттон и немецкий цитолог и эмбриолог Т. Бовери независимо друг от друга выявили параллелизм в поведении генов и хромосом в ходе формирования гамет и оплодотворения. Эти наблюдения послужили основой для предположения, что гены расположены в хромосомах. Однако экспериментальное доказательство локализации конкретных генов в конкретных хромосомах было получено только в 1910 г. американским генетиком Т. Морганом, который в последующие годы (1911—1926) обосновал хромосомную теорию наследственности. Согласно этой теории, передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены.

Морган и его ученики установили следующее:

1. Гены, расположенные в одной хромосоме, наследуются совместно или сцепленно.

2. Группы генов, расположенных в одной хромосоме, образуют группы сцепления. Число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и п+1 у гетерогаметных особей.

3. Между гомологичными хромосомами может происходить обмен участками (кроссинговер); в результате кроссин-говера возникают гаметы, хромосомы которых содержат новые комбинации генов.

4. Частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимают 1 морганиду (1% кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10% и что в 10% потомства будут выявлены новые генетические комбинации.

5. Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строят генетические карты. Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы. Эти выводы Моргана и его сотрудников получили название хромосомной теории наследственности. Важнейшими следствиями этой теории являются современные представления о гене как о функциональной единице наследственности, его делимости и способности к взаимодействию с другими генами.

Таким образом, именно хромосомы представляют собой материальную основу наследственности.

Формированию хромосомной теории способствовали данные, полученные при изучении генетики пола, когда были установлены различия в наборе хромосом у организмов различных полов.


Генетика пола

Пол, как и любой другой признак организма, наследственно детерминирован. Важнейшая роль в генетической детерминации пола и в поддержании закономерного соотношения полов принадлежит хромосомному аппарату.

Рассмотрим хромосомное определение пола. Известно, что у раздельнополых организмов соотношение полов обычно составляет 1:1, т. е. мужские и женские особи встречаются одинаково часто. Это соотношение совпадает с расщеплением в анализирующем скрещивании, когда одна из скрещиваемых форм является гетерозиготной (Аа), а другая — гомозиготной по рецессивным аллелям (аа). В потомстве в этом случае наблюдается расщепление в отношении 1Аа:1аа. Если пол наследуется по такому же принципу, то вполне логично было бы предположить, что один пол должен быть гомозиготным, а другой — гетерозиготным. Тогда расщепление по полу должно быть в каждом поколении равным 1.1, что и наблюдается в действительности.

При изучении хромосомных наборов самцов и самок ряда животных между ними были обнаружены некоторые различия. Как у мужских, так и у женских особей во всех клетках имеются пары одинаковых (гомологичных) хромосом, но по одной паре хромосом они различаются. Такие хромосомы, по которым самцы и самки отличаются друг от друга, называют половыми хромосомами. Те из них, которые являются парными у одного из полов, называют X-хромосомами. Непарная половая хромосома, имеющаяся у особей только одного пола, была названа У-хромосомой. Хромосомы, в отношении которых между самцами и самками нет различий, называют аутосомами.

У птиц, бабочек и пресмыкающихся самцы являются гомога-метным полом, а самки —- гетерогаметным (типа XY или типа ХО). Половые хромосомы у этих видов иногда обозначают буквами Z и W, чтобы выделить таким образом данный способ определения пола; при этом самцы обозначаются символом ZZ, а самки — символом ZW или Z0.


Наследование признаков, сцепленных с полом

В том случае, когда гены, контролирующие формирование того или иного признака, локализованы в аутосомах, наследование осуществляется независимо от того, кто из родителей (мать или отец) является носителем изучаемого признака. Если же гены находятся в половых хромосомах, характер наследования признаков резко изменяется.

Признаки, гены которых локализованы в половых хромосомах, называются признаками, сцепленными с полом. Это явление было открыто Т. Морганом.

Хромосомные наборы разных полов отличаются по строению половых хромосом. Признаки, определяемые генами половых хромосом, называют сцепленными с полом. Характер наследования зависит от распределения хромосом в мейозе. У гетерогаметных полов признаки, сцепленные с Х-хромосомой и не имеющие аллеля в У-хромосоме, проявляются даже в том случае, когда ген, определяющий развитие этих признаков, — рецессивен.Пол организма определяется в момент оплодотворения и зависит от хромосомного набора образовавшейся зиготы. У птиц гетерогаметными являются самки, а гомогаметными — самцы.


Сцепленное наследование

Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом.
В каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов X Морган предложил назвать сцепленным наследованием. Число групп сцепления соответствует гаплоидному набору хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены.

Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигибрид образует четыре типа гамет (АВ, Аb, аВ и аb) в равных количествах, то такой же дигибрид образует только два типа гамет: (АВ и аb) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме обычных гамет возникают и другие —Аb и аВ — с новыми комбинациями генов, отличающимися от родительской гаметы. Причиной возникновения новых гамет является обмен участками гомологичных хромосом, или кроссинговер.

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная величина кроссинговера не превышает 50%. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.


Понятие о генетической карте

Т. Морган и его сотрудники К. Бриджес, А. Стертеванти Г. Меллер экспериментально показали, что знание явлений сцепления и кроссинговера позволяет не только установить группу сцепления генов, но и построить генетические карты хромосом, на которых указаны порядок расположения генов в хромосоме и относительные расстояния между ними.

Генетической картой хромосом называют схему взаимного расположения генов, находящихся в одной группе сцепления. Такие карты составляются для каждой пары гомологичных хромосом.

Возможность подобного картирования основана на постоянстве процента кроссинговера между определенными генами. Генетические карты хромосом составлены для многих видов организмов.

Наличие генетической карты свидетельствует о высокой степени изученности того или иного вида организма и представляет большой научный интерес. Такой организм является прекрасным объектом для проведения дальнейших экспериментальных работ, имеющих не только научное, но и практическое значение. В частности, знание генетических карт позволяет планировать работы по получению организмов с определенными сочетаниями признаков, что теперь широко используется в селекционной практике.

Сравнение генетических карт разных видов живых организмов способствует также пониманию эволюционного процесса.


Основные положения хромосомной теории наследственности

Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.

Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.

Гены расположены в хромосоме в линейной последовательности.

Гены одной хромосомы образуют группу сцепления, благодаря нему происходит сцепленное наследование некоторых признаков. При этом сила сцепления находится в обратной зависимости от расстояния между генами.

Каждый биологический вид характеризуется определенным набором хромосом — кариотипом.

Основоположник теории Томас Гент Морган, американский генетик, нобелевский лауреат, выдвинул гипотезу об ограничении законов Менделя.

В экспериментах он использовал плодовую мушку-дрозо-филу, обладающую важными для генетических экспериментов качествами: неприхотливостью, плодовитостью, небольшим количеством хромосом (четыре пары), множеством четко выраженных альтернативных признаков.

Морган и его ученики установили следующее:

1. Признаки и свойства организма определяются генами. Гены локализованы в хромосомах и расположены там линейно на определенном расстоянии друг от друга.

2. Гены, расположенные в одной хромосоме, наследуются совместно или сцеплено, образуюя группы сцепления. Число групп сцепления равно гаплоидному набору хромосом: 4- у мушки – дрозофилы, 23 - у человека.

3. Между гомологичными хромосомами может происходить обмен участками (кроссинговер) во время мейоза; в результате кроссин-говера возникают гаметы, хромосомы которых содержат новые комбинации генов.

4. По частоте кроссинговера можно судить о расстоянии и порядке расположения генов в хромосоме. Чем расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимают 1 морганиду (1% кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10% и что в 10% потомства будут выявлены новые генетические комбинации.

5. Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строят генетические карты. Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы.

Основоположник теории Томас Гент Морган, американский генетик, нобелевский лауреат, выдвинул гипотезу об ограничении законов Менделя.

В экспериментах он использовал плодовую мушку-дрозофилу, обладающую важными для генетических экспериментов качествами: неприхотливостью, плодовитостью, небольшим количеством хромосом (четыре пары), множеством четко выраженных альтернативных признаков.

Морган и его ученики установили следующее:

  1. Гены, расположенные в одной хромосоме, наследуются совместно или сцепленно.
  2. Группы генов, расположенных в одной хромосоме, образуют группы сцепления. Число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и п+1 у гетерогаметных особей.
  3. Между гомологичными хромосомами может происходить обмен участками (кроссинговер); в результате кроссинговера возникают гаметы, хромосомы которых содержат новые комбинации генов.
  4. Частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимают 1 морганиду (1% кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10% и что в 10% потомства будут выявлены новые генетические комбинации.
  5. Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строят генетические карты. Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы. Эти выводы Моргана и его сотрудников получили название хромосомной теории наследственности . Важнейшими следствиями этой теории являются современные представления о гене как о функциональной единице наследственности, его делимости и способности к взаимодействию с другими генами.

Пример сцепленного наследования:

  • Vg - нормальные крылья дрозофилы;
  • vg - зачаточные крылья;
  • ВВ - серая окраска тела;
  • bb - темная окраска тела.

Запись в хромосомном выражении:

В данном случае правило единообразия гибридов первого поколения соблюдается. В соответствии со вторым и третьим законами Менделя следовало ожидать при последующем анализирующем скрещивании по 25% каждого из возможных фенотипов (серых, длиннокрылых мух, серых короткокрылых, черных длиннокрылых и черных короткокрылых). Однако опыты Моргана не дали таких результатов. При скрещивании рецессивной по обоим признакам самки VgVgbb с гибридным самцом из F1 образовалось 50% серых мух с короткими крыльями и 50% мух с черным телом и длинными крыльями:

Если же скрещивают дигибридную самку с гомозиготным рецессивным самцом, то в образуется потомство: 41,5% - серых с короткими крыльями, 41,5% - черных с длинными крыльями, 8,5% - серых с длинными крыльями, 8,5% - черных с короткими крыльями.

Данные результаты свидетельствуют о наличии сцепления генов и кроссинговере между ними. Так как в потомстве от второго скрещивания было получено 17% рекомбинантных особей, то расстояние между генами Vg и В равно 17%, или 17 морганидам.

Наследование, сцепленное с полом

Хромосомные наборы разных полов отличаются по строению половых хромосом. Y-хромосома мужчин не содержит многих аллелей, имеющихся в Х-хромосоме. Признаки, определяемые генами половых хромосом, называют сцепленными с полом. Характер наследования зависит от распределения хромосом в мейозе. У гетерогаметных полов признаки, сцепленные с Х-хромосомой и не имеющие аллеля в Y-хромосоме, проявляются даже в том случае, когда ген, определяющий развитие этих признаков, - рецессивен. У человека У-хромосома передается от отца к сыновьям, а Х-хромосома - к дочерям. Вторую хромосому дети получают от матери. Это всегда Х-хромосома. Если мать несет патологический рецессивный ген в одной из Х-хромосом (например, ген дальтонизма или гемофилии), но при этом сама не больна, то она является носительницей. В случае передачи этого гена сыновьям они могут родиться с данным заболеванием, ибо в У- хромосоме нет аллеля, подавляющего патологический ген. Пол организма определяется в момент оплодотворения и зависит от хромосомного набора образовавшейся зиготы. У птиц гетерогаметными являются самки, а гомогаметными - самцы. У пчел половых хромосом вообще нет. Самцы гаплоидны. Самки пчел диплоидны.

Основные положения хромосомной теории наследственности:

  • каждый ген имеет в хромосоме определенный локус (место);
  • гены в хромосоме расположены в определенной последовательности;
  • гены одной хромосомы сцеплены, поэтому наследуются преимущественно вместе;
  • частота кроссинговера между генами равна расстоянию между ними;
  • набор хромосом в клетках данного типа (кариотип) является характерной особенностью вида.

Хромосомная теория наследственности

Сцепленное наследование признаков. Как мы отмечали в прошлой лекции, независимое наследование признаков при ди- и полигибридном скрещивании бывает в случае, если гены этих признаков локализованы в разных хромосомах. Но количество хромосом ограничено по сравнению с количеством признаков. У большинства животных организмов число хромосом не превышает 100. В то же время число признаков, каждый из которых контролируется по крайней мере одним геном, значительно больше. Так, например, у дрозофилы изучено 1000 генов, которые локализованы в четырех парах хромосом, у человека известно несколько тысяч генов при 23 парах хромосом и т.д. Отсюда следует, что в каждой паре хромосом располагается много генов. Естественно, что между генами, которые находятся в одной хромосоме, наблюдается сцепление, и при образовании половых клеток они должны передаваться вместе.

Сцепленное наследование признаков открыли в 1906 г, английские генетики В.Бетсон и Р.Пеннет при изучении наследования признаков у душистого горошка, но они не смогли дать теоретическое объяснение этому явлению. Природу сцепленного наследования выяснили американские исследователи Т. Морган и его сотрудники С. Бриджес и А. Стертевант в 1910 году. В качестве объекта исследований они избрали плодовую мушку дрозофилу очень удобную для генетических опытов. Достоинства этого объекта исследования следующие: малое число хромосом (4 лары), высокая плодовитость, быстрая сменяемость поколений (12-14 суток). Мухи дрозофилы серого цвета, с красными глазами, имеют маленькие размеры (около 3 мм), легко разводятся в лабораторных условиях на простых по составу питательных средах. У дрозофилы выявлено большое число мутантных форм. Мутации затрагивают окраску глаз и тела, форму и размер крыльев, расположение щетинок и др.

Изучение наследования разных пар признаков и их расщепления при дигибридномскрещивании позволило обнаружить наряду с независимым комбинированием признаков явление сцепленного наследования. На основании изучения большого числа признаков было установлено, что все они распределяются на четыре группы сцепления в соответствии с числом хромосом у дрозофилы. Сцепленное наследование признаков связано с локализацией группы определенных генов в одной хромосоме.

Мысль о локализации генов в хромосомах была высказана Сеттоном еще в 1902 году, когда им был обнаружен параллелизм в поведении хромосом в мейозе и наследовании признаков у кузнечика.

Наиболее четкая разница в поведении сцепленных и независимо наследующихся генов выявляется при проведении анализирующего скрещивания.

Рассмотрим это на примере. В первом случае возьмем признаки, гены которых расположены в разных хромосомах.

Р === === х === ===

Гаметы: АВ , Ав, аВ, ав ав

А В А в а В а в

F === === ; === === ; === === ; === ===

а в а в а в а в

В результате мы получили потомство четырех фнотипических классов в соотношении: 1: 1: 1: 1. Другие результаты будут, если гены А и В локализованы в одной хромосоме.

Р =*===*= х =*===*=

Гаметы: А В, а в а в

F =*===*= ; =*===*=

Таким образом, если гены находятся в одной хромосоме в потомстве при анализирующем скрещивании, мы получим два класса потомков похожих на отца и на мать и не будет потомков с признаками отца и матери одновременно.

Опыты, подтверждающие сцепленное наследование признаков, были проведены Т.Морганом на дрозофиле. Для скрещивания были взяты особи серые с нормальными крыльями (доминантные признаки) и черные с зачаточными крыльями (рецессивные признаки). В результате опытов были получены потомки только серые крылатые и черные с зачаточными крыльями.

На основании проведенных экспериментов Т.Морган сформулировал закон сцепленного наследования признаков: признаки, гены которых располагаются в одной хромосоме, наследуются сцепленно.

Неполное сцепление. Явление кроссинговера . Наряду с полным сцепленным наследованием признаков Т.Морган в своих опытах с дрозофилой обнаружил и неполное сцепленное наследование. При неполном сцепленном наследовании одновременно с формами, похожими на родителей, были обнаружены организмы, у которых наблюдались признаки обоих родителей. Однако соотношение этих форм не было равным как при независимом комбинировании. В потомстве явно преобладали формы, схожие с родителями, а организмов рекомбинантов было значительно меньше.

Схема неполного сцепленного наследования признаков.

Р =*===*= х =*===*=

Гаметы: А В, а в, а В, А в а в

без кроссин. кроссоверные

А В а в а В А в

F ====; ====; ====; ====

а в а в а в а в

рекомбинанты

Объяснить этот факт можно следующим образом. Если гены А и В расположены в одной хромосоме, а в гомологичной ей хромосоме расположены рецессивные аллели а и в, то отделиться друг от друга и вступить в новые сочетания гены А и В могут только в том случае, если хромосома, в которой они расположены, будет разорвана на участке между этими генами и затем соединена с участком гомологичной хромосомы. В 1909 году Ф. Янсенс, изучая мейоз у земноводных, обнаружил в диплотене профазы 1 хиазмы (перекресты хромосом) и высказал предположение, что хромосомы взаимно обмениваются участками. Т.Морган развил это представление в идею об обмене генами приконьюгации гомологичных хромосом, а неполное сцепление было объяснено им как результат такого обмена и названо кроссинговером.

Схема кроссинговера.

А а А а А а

В в в В в В

Кроссинговер может быть одинарным, как показано на схеме, двойным и множественным. Кроссинговер возник в процессе эволюции. Он приводит к появлению организмов с новыми сочетаниями признаков, т.е. к увеличению изменчивости. Изменчивостьже является одним из движущих факторов эволюции.

Частота кроссинговера определяется по формуле и выражается в процентах или морганидах (1 морганида равна 1% перекреста).

число рекомбинантов

Р кроссинговера = х 100%

общее число потомков

Если, например, общее число потомков, полученное в результате анализирующего скрещивания, равно 800, а число кроссоверных форм – 80, то

частота кроссинговера будет:

Р кросс. = х 100% = 10% (или 10 морганид)

Величина перекреста зависит от расстояния между генами. Чем дальше удалены гены друг от друга, тем чаще происходит перекрест. Установлено, что количество кроссоверных особей к общему числу потомков никогда не превышает 50%, так как при очень больших расстояниях между генами чаше происходит двойной кроссинговер и часть кроссоверных особей остается неучтенной.

Явление кроссинговера, установленное генетическими методами на дрозофиле, нужно было доказать цитологически. Это сделали в начале 30 годов Штерн на дрозофиле и Б. Мак-Клинтон на кукурузе. Для этого были получены гетероморфные хромосомы, т.е. хромосомы, различающиеся внешне с локализацией в них известных генов. В этом случае у кроссоверных форм можно было видеть рекомбинантные хромосомы и сомнений о наличии кроссинговера не возникало.

Процесс протекания кроссинговера зависит от многих факторов. Большое влияние на кроссинговер оказывает пол. Так, у дрозофилы кроссинговер происходит только у самок. У тутового шелкопряда кроссинговер отмечается у самцов. У животных и человека кроссингавер происходит у обоих полов. На частоту кроссинговера влияют также возраст организмов и условия среды.

К. Штерн показал, что кроссинговер может возникать не только в мейозе, при развитии половых клеток, но в некоторых случаях и в обычных соматических клетках. П о-видимому соматический кроссинговер широко распостранен в природе.

Линейное расположение генов в хромосомах. Карты хромосом . После того как была установлена связь генов с хромосомами и обнаружено, что частота кроссинговера всегда вполне определенная величина для каждой пары генов, расположенных в одной группе сцепления, встал вопрос о пространственном расположении генов в хромосомах. На основании многочисленных генетических исследований Морган и его ученик Стертевант выдвинули гипотезу линейного расположения генов в хромосоме. Изучение взаимоотношения между тремя генами при неполном сцеплении показало, что частота перекреста между первым и вторым, вторым и третьим, первым и третьим генами равна сумме или разности между ними. Так, если в одной группе сцепления расположены три гена - А, В и С, то процент перекреста между генами АС равен сумме процентов перекреста между генами АВ и ВС, частота перекреста между генами АВ оказалась равной АС - ВС, а между генами ВС = АС - АВ. Приведенные данные соответствуют геометрической закономерности в расстояниях между тремя точками на прямой. На этом основании был сделан вывод, что гены расположены в хромосомах в линейной последовательности на определенном расстоянии друг от друга. Используя эту закономерность, можно строить карты хромосом.

Карта хромосомы это схема, на которой показано, какие гены локализованы в данной хромосоме, в каком поряке и на каком расстоянии друг от друга они располагаются. Для построения карты хромосом проводят анализирующее скрещивание и определяют частоту кроссинговера. Например, установлено, что в хромосоме локализованы три гена М, N и К. Частота перекреста между генами М и N составляет 12%, между М и К - 4 % и между N и К - 8%. Чем больше частота кроссинговера, тем дальше друг от друга расположены гены. Используя эту закономерность, строим карту хромосомы.

После построения генетических карт встал вопрос о том, отвечает ли расположение генов в хромосоме, определенное на основании частоты кроссинговера, истинному расположению. С этой цепью генетические карты нужно было сравнить с цитологическими.

В 30 годах нашего столетия Пайнтер открыл в слюнных железах дрозофилы гигантские хромосомы, строение которых можно было изучать под микроскопом. Хромосомы эти имеют характерный для них поперечный рисунок в виде дисков разной толщины и формы. Каждая хромосома по длине имеет специфические рисунки дисков, что позволяет отличать разные ее участки друг от друга. Появилась возможность сравнить генетические карты с фактическим расположением генов в хромосомах. Материалом для проверки служили хромосомы, у которых вследствие мутаций возникли различные хромосомные перестройки:не хватало отдельных дисков, или они были удвоены. Диски служили маркерами, с их помощью определяли характер хромосомных перестроек и место расположения генов, о существовании которых было известно на основании данных генетического анализа. При сопоставлении генетических карт хромосом с цитологическими было установлено, что каждый ген находится в определенном месте (локусе) хромосомы и что гены в хромосомах расположены в определенной линейной последовательности. В то же время было обнаружено, что физические расстояния между генами на генетическойкарте не вполне соответствуют установленным цитологически. Однако это не снижает ценности генетических карт хромосом для предсказания появления особей с новыми сочетаниями признаков.

На основании анализа результатов многочисленных исследований на дрозофиле и других объектах Т. Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем:

Материальные носители наследственности - гены находятся в хромосомах, располагаются в них линейно на определенном расстоянии друг от друга;

Гены, расположенные в одной хромосоме, относятся к одной группе

сцепления. Число групп сцепления соответствуют гаплоидному числу хромосом;

Признаки, гены которых находятся в одной хромосоме, наследуются сцепленно;

Неполное сцепленное наследование признаков связано с явлением кроссинговера, частота которого зависит от расстояния между генами;

На основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.