Занимательные опыты по физике (исследовательская работа). Простые опыты

И вместе с ними познавать мир и чудеса физических явлений? Тогда приглашаем в нашу "экспериментальную лабораторию", в которой мы расскажем, как создавать простые, но очень интересные эксперименты для детей.


Эксперименты с яйцом

Яйцо с солью

Яйцо опустится на дно, если Вы поместите его в стакан с обычной водой, но что произойдет, если в воду добавить соль? Результат очень интересен и может наглядно показать интересные факты о плотности.

Вам понадобятся:

  • Поваренная соль
  • Высокий стакан.

Инструкция:

1. Половину стакана наполняем водой.

2. Добавляем в стакан много соли (около 6 столовых ложек).

3. Мешаем.

4. Осторожно опускаем яйцо в воду и наблюдаем за происходящим.

Объяснение

Соленая вода имеет большую плотность, чем обычная водопроводная. Именно соль поднимает яйцо на поверхность. А если добавлять в уже имеющуюся соленую воду пресную, то яйцо будет постепенно опускаться на дно.

Яйцо в бутылке


Знаете ли Вы, что вареное цельное яйцо можно легко поместить в бутылку?

Вам понадобятся:

  • Бутылка с диаметром горлышка меньшим диаметра яйца
  • Вареное яйцо вкрутую
  • Спички
  • Немного бумаги
  • Растительное масло.

Инструкция:

1. Смажьте горлышко бутылки растительным маслом.

2. Теперь поджигайте бумагу (можно просто несколько спичек) и сразу кидайте в бутылку.

3. Положите на горлышко яйцо.

Когда огонь погаснет, яйцо окажется внутри бутылки.

Объяснение

Огонь провоцирует нагревание воздуха в бутылке, который выходит наружу. После того, как погаснет огонь, воздух в бутылке начнет охлаждаться и сжиматься. Поэтому в бутылке образуется низкое давление, а наружное давление заталкивает яйцо в бутылку.

Эксперимент с шариком


Этот опыт показывает, как взаимодействуют между собой резина и апельсиновая цедра.

Вам понадобятся:

  • Воздушный шарик
  • Апельсин.

Инструкция:

1. Надуйте воздушный шарик.

2. Почистите апельсин, но апельсиновую шкурку (цедру) не выбрасывайте.

3. Выжмите апельсиновую цедру над шариком, после чего он лопнет.

Объяснение.

Цедра апельсина содержит вещество лимонен. Он способен растворять резину, что и происходит с шариком.

Эксперимент со свечой


Интересный эксперимент, показывающий возгорание свечи на расстоянии.

Вам понадобятся:

  • Обычная свеча
  • Спички или зажигалка.

Инструкция:

1. Зажгите свечу.

2. Через несколько секунд потушите ее.

3. Теперь поднесите горящее пламя к дыму, исходящему от свечи. Свеча снова начнет гореть.

Объяснение

Дым, поднимающийся вверх от погасшей свечи, содержит парафин, который быстро загорается. Горящие пары парафина доходят до фитиля, и свеча снова начинает гореть.

Сода с уксусом


Шарик, который сам надувается, это очень интересное зрелище.

Вам понадобятся:

  • Бутылка
  • Стакан уксуса
  • 4 чайных ложки соды
  • Воздушный шарик.

Инструкция:

1. Наливаем стакан уксуса в бутылку.

2. Засыпаем соду в шарик.

3. Надеваем шарик на горлышко бутылки.

4. Медленно ставим шарик вертикально, высыпая при этом соду в бутылку с уксусом.

5. Наблюдаем за тем, как надувается шарик.

Объяснение

Если добавлять соду в уксус, то происходит процесс, называемый гашение соды. Во время данного процесса выделяется углекислый газ, который и надувает наш шарик.

Невидимые чернила


Поиграйте со своим ребенком в секретного агента и создайте свои невидимые чернила.

Вам понадобятся:

  • Половина лимона
  • Ложка
  • Миска
  • Ватный тампон
  • Белая бумага
  • Лампа.

Инструкция:

1. Выжмите немного лимонного сока в миску и добавьте столько же воды.

2. Опустите ватный тампон в смесь и напишите что-нибудь на белой бумаге.

3. Подождите, пока сок высохнет, и полностью станет невидимым.

4. Когда вы будете готовы, чтобы прочитать секретное сообщение или показать его кому-то еще, нагрейте бумагу, держа ее близко к лампочке или к огню.

Объяснение

Лимонный сок является органическим веществом, которое окисляется и становится коричневым при нагревании. Разбавленный лимонный сок в воде делает его трудно заметным на бумаге, и никто не будет знать, что там есть лимонный сок, пока он не нагреется.

Другие вещества, которые работают по такому же принципу:

  • Апельсиновый сок
  • Молоко
  • Луковый сок
  • Уксус
  • Вино.

Как сделать лаву


Вам понадобятся:

  • Подсолнечное масло
  • Сок или пищевой краситель
  • Прозрачный сосуд (можно стакан)
  • Какие-либо шипучие таблетки.

Инструкция:

1. Сперва наливаем сок в стакан так, чтобы он заполнил примерно 70% объема тары.

2. Оставшуюся часть стакана заполняем подсолнечным маслом.

3. Теперь ждем, пока сок отделится от подсолнечного масла.

4. Бросаем в стакан таблетку и наблюдаем эффект, похожий на лаву. Когда таблетка растворится, то можно бросить еще одну.

Объяснение

Масло отделяется от воды, так как оно имеет меньшую плотность. Растворяясь в соке, таблетка выделяет углекислый газ, который захватывает части сока и поднимает его наверх. Газ выходит полностью из стакана, когда достигает вершины, при этом частицы сока падают обратно вниз.

Таблетка шипит за счет того, что содержит лимонную кислоту и соду (бикарбонат натрия). Оба эти ингредиента вступают в реакцию с водой с образованием цитрата натрия и газообразного диоксида углерода.

Эксперимент со льдом


На первый взгляд можно подумать, что кубик льда, находясь сверху, в конечном итоге плавится, за счет чего и должен заставить воду разлиться, но так ли это на самом деле?

Вам понадобятся:

  • Стакан
  • Кубики льда.

Инструкция:

1. Заполните стакан теплой водой до самого края.

2. Осторожно опустите кубики льда.

3. Наблюдайте внимательно за уровнем воды.

По мере таяния льда уровень воды совершенно не меняется.

Объяснение

Когда вода замерзает, превращаясь в лед, она расширяется, увеличивая свой объем (вот почему зимой могут разрываться даже отопительные трубы). Вода из растаявшего льда занимает меньше места, чем сам лед. Поэтому когда кубик льда тает, уровень воды остается примерно такой же.

Как сделать парашют


Узнайте о сопротивлении воздуха, сделав небольшой парашют.

Вам понадобятся:

  • Полиэтиленовый пакет или другой легкий материал
  • Ножницы
  • Маленький груз (возможно, какая-либо фигурка).

Инструкция:

1. Вырезаем большой квадрат из полиэтиленового пакета.

2. Теперь обрезаем края так, чтобы получился восьмиугольник (восемь одинаковых сторон).

3. Теперь привязываем 8 отрезков нитей к каждому углу.

4. Не забудьте сделать небольшое отверстие в середине парашюта.

5. Другие концы нитей привяжите на маленький груз.

6. Используем стул или находим высокую точку, чтобы запустить парашют и проверить, как он летает. Помните, что парашют должен лететь как можно медленнее.

Объяснение

Когда выпускается парашют, груз тянет его вниз, но при помощи строп парашют занимает большую площадь, которая сопротивляется воздуху, за счет чего груз медленно опускается. Чем больше площадь поверхности парашюта, тем больше сопротивляется эта поверхность падению, и тем медленнее будет опускаться парашют.

Небольшое отверстие в середине парашюта позволяет воздуху медленно проходить через него, а не заваливать парашют на одну сторону.

Как сделать торнадо


Узнайте, как сделать торнадо в бутылке с этим веселым научным экспериментом для детей. Использованные в эксперименте предметы легко найти в обиходе. Сделанный домашний мини-торнадо намного безопаснее торнадо, который показывают по телевидению в степях Америки.

1. Цилиндры со стругом.

Притяжение между молекулами становится заметным только тогда, когда они находятся очень близко друг к другу, на расстояниях, сравнимых с размером самих молекул. Два свинцовых цилиндра сцепляются вместе, если их вплотную прижать друг к другу ровными, только что срезанными поверхностями. При этом сцепление может быть настолько прочным, что цилиндры не удаётся оторвать друг от друга даже при большой нагрузке.

2. Определение архимедовой силы.

1. К пружине подвешивают небольшое ведёрко и тело цилиндрической формы. Растяжение пружины по положению стрелки отмечают меткой на штативе. Она показывает вес тела в воздухе.

2. Приподняв тело, под него подставляют отливной сосуд, наполненный водой до уровня отливной трубки. После чего тело погружают целиком в воду. При этом часть жидкости, объём которой равен объёму тела, выливается из отливного сосуда в стакан. Указатель пружины поднимается вверх, пружина сокращается, показывая уменьшение веса тела в воде. В данном случае на тело, наряду с силой тяжести, действует ещё и сила, выталкивающая его из жидкости.

3. Если в ведёрко перелить воду из стакана (т.е. ту, которую вытеснило тело),то указатель пружины возвратится к своему начальному положению.

На основании этого опыта можно заключить, что, сила, выталкивающая тело, целиком погруженное в жидкость, равна весу жидкости в объёме этого тела.

3. Поднесём дугообразный магнит к листу картона. Магнит не притянет его. Затем положим картон на мелкие железные предметы и снова поднесём магнит. Лист картона поднимется, а за ним и мелкие железные предметы. Это происходит потому, что между магнитом и мелкими железными предметами образуется магнитное поле, которое действует и на картон, под действием этого поля картон притягивается к магниту.

4. Положим дугообразный магнит на край стола. Тонкую иглу с ниткой положим на один из полюсов магнита. Затем осторожно потянем иглу за нить, пока игла не соскочит с полюса магнита. Игла зависает в воздухе. Это происходит потому, что находясь в магнитном поле, иголка намагничивается и притягивается к магниту.

5. Действие магнитного поля на катушку с током.

Магнитное поле действует с некоторой силой на любой проводник с током, находящийся в этом поле.

У нас имеется катушка, подвешенная на гибких проводах, которые присоединены к источнику тока. Катушка помещена между полюсами дугообразного магнита, т.е. находится в магнитном поле. Взаимодействие между ними не наблюдается. При замыкании электрической цепи катушка приходит в движение. Направление движения катушки зависит от направления тока в ней и от расположения полюсов магнита. В данном случае ток направлен по часовой стрелке и катушка притянулась. При изменении направления тока на противоположное катушка оттолкнётся.

Точно так же катушка изменит направление движения при изменении расположения полюсов магнита (т.е. изменения направления линий магнитного поля).

Если убрать магнит, то при замыкании цепи катушка двигаться не будет.

Значит, со стороны магнитного поля на катушку с током действует некоторая сила, отклоняющая его от первоначального положения.

Следовательно, направление тока в проводнике, направление линий магнитного поля и направление силы, действующей на проводник, связаны между собой.

6. Прибор для демонстрации правила Ленца.

Выясним, как направлен индукционный ток. Для этого воспользуемся прибором, который представляет собой узкую алюминиевую пластинку с алюминиевыми кольцами на концах. Одно кольцо сплошное, другое имеет разрез. Пластинка с кольцами помещена на стойку и может свободно вращаться вокруг вертикальной оси.

Возьмём дугообразный магнит и внесём его в кольцо с разрезом - кольцо останется на месте. Если же вносить магнит в сплошное кольцо, то оно будет отталкиваться, уходить от магнита, поворачивая при этом всю пластинку. Результат будет точно таким же, если магнит будет повёрнут к кольцам не северным полюсом, а южным.

Объясним наблюдаемое явление.

При приближении к кольцу любого полюса магнита, поле которого является неоднородным, проходящий сквозь кольцо магнитный поток увеличивается. При этом в сплошном кольце возникает индукционный ток, а в кольце с разрезом тока не будет.

Ток в сплошном кольце создаёт в пространстве магнитное поле, благодаря чему кольцо приобретает свойства магнита. Взаимодействуя с приближающимся магнитом, кольцо отталкивается от него. Из этого следует, что кольцо и магнит обращены друг к другу одноимёнными полюсами, а векторы магнитной индукции их полей направлены в противоположные стороны. Зная направление вектора индукции магнитного поля кольца, можно по правилу правой руки определить направление индукционного тока в кольце. Отодвигаясь от приближающегося к нему магнита, кольцо противодействует увеличению проходящего сквозь него внешнего магнитного потока.

Теперь посмотрим, что произойдёт при уменьшении внешнего магнитного потока сквозь кольцо. Для этого, удерживая кольцо рукой, внесём в него магнит. Затем, отпустив кольцо, начнём удалять магнит. В этом случае кольцо будет следовать за магнитом, притягиваться к нему. Значит, кольцо и магнит обращены друг к другу разноимёнными полюсами, а векторы магнитной индукции их полей направлены в одну сторону. Следовательно, магнитное поле тока будет противодействовать уменьшению внешнего магнитного потока, проходящего сквозь кольцо.

На основании результатов рассмотренных опытов было сформулировано правило Ленца: возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению внешнего магнитного потока, которое вызвало этот ток.

7. Шар с кольцом.

О том, что все тела состоят из мельчайших частиц между которыми есть промежутки, позволяет судить следующий опыт по изменению объёма шара при нагревании и охлаждении.

Возьмём стальной шарик, который в ненагретом состоянии проходит сквозь кольцо. Если шарик нагреть, то, расширившись, он уже сквозь кольцо не пройдёт. Через некоторое время шарик, остыв, уменьшится в объёме, а кольцо, нагревшись от шарика, расширится, и шарик вновь пройдёт сквозь кольцо. Это происходит потому, что все вещества состоят из отдельных частичек, между которыми есть промежутки. Если частицы удаляются друг от друга, то объём тела увеличивается. Если частицы сближаются, объём тела уменьшается.

8. Давление света.

На лёгкие крылышки, находящиеся в сосуде, из которого откачан воздух, направляют свет. Крылышки приходят в движение. Причина светового давления заключается в том, что фотоны обладают импульсом. При поглощении их крылышками они передают им свой импульс. Согласно закону сохранения импульса импульс крылышек становится равным импульсу поглощённых фотонов. Поэтому покоящиеся крылышки приходят в движение. Изменение импульса крылышек означает согласно второму закону Ньютона, что на крылышки действует сила.

9. Источники звука. Звуковые колебания.

Источниками звука являются колеблющиеся тела. Но не всякое колеблющееся тело является источником звука. Не издаёт звука колеблющейся шарик, подвешенный на нити, т.к его колебания происходят с частотой меньше 16 Гц. Если по камертону ударить молоточком, то камертон зазвучит. Значит его колебания лежат в звуковом диапазоне частот от 16 Гц до 20 кГц. Поднесём к звучащему камертону шарик, подвешенный на нитке, - шарик будет отскакивать от камертона, свидетельствуя о колебаниях его ветвей.

10. Электрофорная машина.

Электрофорная машина является источником тока, в котором механическая энергия превращается в электрическую.

11. Прибор для демонстрации инерции.

Прибор позволяет учащимся усвоить понятие импульса силы и показать его зависимость от действующей силы и времени её действия.

На торец стойки с лункой положим пластинку, а на пластинку - шарик. Медленно сдвинем пластинку с шариком с торца стойки и увидим одновременное движение шарика и пластинки, т.е. шарик по отношению к пластинке неподвижен. Значит результат взаимодействия шарика и пластинки зависит от времени взаимодействия.

На торец стойки с лункой положим пластинку так, чтобы её торец коснулся плоской пружины. На пластинку положим шарик на место соприкосновения пластинки с торцом стойки. Придерживая левой рукой площадку, слегка оттянем пружину от пластинки и отпустим её. Пластинка вылетает из под шарика, а шарик остаётся на месте в лунке стойки. Значит результат взаимодействия тел зависит не только от времени, но и от силы взаимодействия.

Также этот опыт служит косвенным доказательством 1 закона Ньютона - закона инерции. Пластинка после вылета далее движется по инерции. А шарик сохраняет состояние покоя, при отсутствии внешнего воздействия на него.

На школьных уроках физики учителя всегда говорят, что физические явления повсюду в нашей жизни. Только мы частенько об этом забываем. Меж тем, удивительное рядом! Не думайте, что для организации физических опытов на дому вам потребуется что-то сверхъестественное. И вот вам несколько доказательств;)

Магнитный карандаш

Что необходимо приготовить?

  • Батарейку.
  • Толстый карандаш.
  • Медную изолированную проволоку диаметром 0,2–0,3 мм и длиной несколько метров (чем больше, тем лучше).
  • Скотч.

Проведение опыта

Намотайте проволоку вплотную виток к витку на карандаш, не доходя до его краев по 1 см. Кончился один ряд - наматывайте другой сверху в обратную сторону. И так, пока не закончится вся проволока. Не забудьте оставить свободными два конца проволоки по 8–10 см. Чтобы витки после намотки не разматывались, закрепите их скотчем. Зачистите свободные концы проволоки и подсоедините их к контактам батарейки.

Что произошло?

Получился магнит! Попробуйте поднести к нему маленькие железные предметы - скрепку, шпильку. Притягиваются!

Повелитель воды

Что необходимо приготовить?

  • Палочку из оргстекла (например, ученическую линейку или обычную пластмассовую расчёску).
  • Сухую тряпочку из шёлка или шерсти (например, шерстяной свитер).

Проведение опыта

Откройте кран, чтобы текла тонкая струйка воды. Сильно потрите палочку или расчёску о приготовленную тряпочку. Быстро приблизьте палочку к струйке воды, не касаясь её.

Что произойдёт?

Струя воды изогнётся дугой, притягиваясь к палочке. Попробуйте то же самое сделать с двумя палочками и посмотрите, что получится.

Волчок

Что необходимо приготовить?

  • Бумагу, иголку и ластик.
  • Палочку и сухую шерстяную тряпочку из предыдущего опыта.

Проведение опыта

Управлять можно не только водой! Вырежьте полоску бумаги шириной 1–2 см и длиной 10–15 см, изогните по краям и посередине, как показано на рисунке. Воткните иголку острым концом в ластик. Уравновесьте заготовку-волчок на иголке. Подготовьте «волшебную палочку», потрите её о сухую тряпочку и поднесите к одному из концов бумажной полоски сбоку или сверху, не касаясь её.

Что произойдёт?

Полоска станет раскачиваться вверх-вниз, как качели, или будет крутиться, как карусель. А если вы сможете вырезать из тонкой бумаги бабочку, то опыт будет ещё интереснее.

Лед и пламя

(опыт проводится в солнечный день)

Что необходимо приготовить?

  • Небольшую чашку с круглым дном.
  • Кусочек сухой бумажки.

Проведение опыта

Налейте в чашку воды и поставьте в морозилку. Когда вода превратится в лёд, выньте чашку и поставьте в ёмкость с горячей водой. Через некоторое время лёд отделится от чашки. Теперь выйдите на балкон, положите кусочек бумажки на каменный пол балкона. Куском льда сфокусируйте солнце на бумажке.

Что произойдёт?

Бумага должна обуглиться, ведь в руках уже не просто лед… Вы догадались, что сделали лупу?

Неправильное зеркало

Что необходимо приготовить?

  • Прозрачную банку с плотно закрывающейся крышкой.
  • Зеркало.

Проведение опыта

Налейте в банку воды с излишком и закройте крышкой, чтобы внутрь не попали пузыри воздуха. Приставьте банку к зеркалу крышкой вверх. Теперь можно смотреться в «зеркало».

Приблизьте лицо и посмотрите внутрь. Там будет уменьшенное изображение. Теперь начинайте наклонять банку в сторону, не отрывая от зеркала.

Что произойдёт?

Отражение вашей головы в банке, само собой, будет тоже наклоняться, пока не окажется перевёрнутым вниз, при этом ног так и не будет видно. Поднимите банку, и отражение вновь перевернётся.

Коктейль с пузырьками

Что необходимо приготовить?

  • Стакан с крепким раствором поваренной соли.
  • Батарейку от карманного фонарика.
  • Два кусочка медной проволоки длиной примерно по 10 см.
  • Мелкую наждачную бумагу.

Проведение опыта

Зачистите концы проволоки мелкой наждачной шкуркой. Подсоедините к каждому полюсу батарейки по одному концу проволочек. Свободные концы проволочек опустите в стакан с раствором.

Что произошло?

Вблизи опущенных концов проволоки будут подниматься пузырьки.

Батарейка из лимона

Что необходимо приготовить?

  • Лимон, тщательно вымытый и насухо вытертый.
  • Два кусочка медной изолированной проволоки примерно 0,2–0,5 мм толщиной и длиной 10 см.
  • Стальную скрепку для бумаги.
  • Лампочку от карманного фонарика.

Проведение опыта

Зачистите противоположные концы обеих проволок на расстоянии 2–3 см. Вставьте в лимон скрепку, прикрутите к ней конец одной из проволочек. Воткните в лимон в 1–1,5 см от скрепки конец второй проволочки. Для этого сначала проткните лимон в этом месте иголкой. Возьмите два свободных конца проволочек и приложи к контактам лампочки.

Что произойдёт?

Лампочка загорится!

Эксперимент – один из самых информативных способов познания. Благодаря ему удается получить разнообразные и обширные звания о исследуемом явлении или системе. Именно эксперимент играет фундаментальную роль в физических исследованиях. Красивые физические эксперименты надолго остаются в памяти последующих поколений, а также способствуют популяризации физических идей в массах. Приведем наиболее интересные физические эксперименты по мнению самих физиков из опроса Роберта Криза и Стони Бука.

1. Эксперимент Эратосфена Киренского

Этот эксперимент по праву считают одним из самых древних на сегодняшний день. В третьем веке до н.э. библиотекарь Александрийской библиотеки Эрастофен Киренский интересным способом измерил радиус Земли. в день летнего солнцестояния в Сиене солнце находилось в зените, в результате чего теней от предметов не наблюдалось. В 5000 стадиях к северу в Александрии в тоже время Солнце отклонилось от зенита на 7 градусов. Отсюда библиотекарь получил информацию, что окружность Земли 40 тысяч км., а её радиус равен 6300 км. Эрастофен получил показатели всего на 5% меньше сегодняшних, что для использованных им древних измерительных приборов просто поразительно.

2. Галилео Галилей и его самый первый эксперимент

В XVII веке Теория Аристотеля была главенствующей и беспрекословной. Согласно этой теории скорость падения тела непосредственно зависела от его веса. Примером служили перо и камень. Теория была ошибочной, так как в ней не учитывалось сопротивление воздуха.

Галилео Галилей в этой теории усомнился и решил провести серию экспериментов лично. Он взял большое пушечное ядро и запустил его с Пизанской башни, в паре с легкой пулей для мушкета. Учитывая их близкую обтекаемую форму можно было легко пренебречь сопротивлением воздуха и конечно же оба предмета приземлялись одновременно, опровергая теорию Аристотеля. считает, что нужно лично съездить в Пизу и выбросить что-нибудь похожее внешне и разное по весу с башни, дабы почувствовать себя великим ученым.

3. Второй эксперимент Галилео Галилея

Вторым утверждением Аристотеля было то, что тела под действием силы движутся с постоянной скоростью. Галилей запускал металлические шары по наклонной плоскости и фиксировал пройденное ими за определенное время расстояние. Затем он увеличил время в два раза, но шары за это время проходили в 4 раза большее расстояние. Таким образом зависимость была не линейная, то есть скорость не постоянная. Отсюда Галилей сделал вывод о ускоренном движении под действием силы.
Эти два эксперимента послужили основой для создания классической механики.

4. Эксперимент Генри Кавендиша

Ньютон является собственником формулировки закона всемирного тяготения, в которой присутствует гравитационная постоянная. Естественно возникла проблема нахождения её числового значения. Но для этого нужно было бы измерить силу взаимодействия между телами. Но проблема в том, что сила притяжения достаточно слабая, нужно было бы использовать или гигантские массы, или малые расстояния.

Джону Мичеллу далось придумать, а Кавендишу провести в 1798 году достаточно интересный эксперимент. В качестве измерительного прибора выступали крутильные весы. На них на коромысле были закреплены шарики на тонких веревочках. На шарики прикрепили зеркальца. Затем к маленьким шарикам подносили очень большие и тяжелые и фиксировали смещении по световым зайчикам. Результатом серии опытов стало определение значения гравитационной постоянной и массы Земли.

5. Эксперимент Жана Бернара Леона Фуко

Благодаря большущему (67 м) маятнику, который был установлен в парижском Пантеоне Фуко в 1851 году методом эксперимента довел факт вращения Земли вокруг оси. Плоскость вращения маятника остается неизменной по отношению к звездам, но наблюдатель вращается вместе с планетой. Таким образом можно увидеть как постепенно смещается в сторону плоскость вращения маятника. Это достаточно простой и безопасный эксперимент, в отличие от того, о котором мы писали в статье

6. Эксперимент Исаака Ньютона

И снова проверялось утверждение Аристотеля. Бытовало мнение, что различные цвета являются смесями в разной пропорции света и тьмы. Чем больше тьмы, тем ближе цвет к фиолетовому и наоборот.

Люди уже давно заметили, что большие монокристаллы разлагают свет на цвета. Серии опытов с призмами проделали чешский естествоиспытатель Марции английский Хариот. Новую серию начал Ньютон в 1672 году.
Ньютон ставил физические эксперименты в темной комнате, пропуская тонкий луч света через маленькую дырочку в плотных шторах. Этот луч попадал на призму и раскладывался на цвета радуги на экране. Явление было названо дисперсией и позже теоретически обосновано.

Но Ньютон пошел дальше, ведь его интересовала природа света и цветов. Он пропускал лучи через две призмы последовательно. На основании этих своих опытов, Ньютон сделал вывод о том, что цвет не является комбинацией света и тьмы, и тем более не есть атрибутом предмета. Белый свет состоит из всех цветов, которые можно увидеть при дисперсии.

7. Эксперимент Томаса Юнга

Вплоть до XIX века главенствовала корпускулярная теория света. Считалась, что свет как и материя состоит из частиц. Томас Юнг, английский врач и физик, в 1801 году провел свой эксперимент для проверки этого утверждения. Если предположить, что свет имеет волновую теорию, то должно наблюдаться такое же взаимодействующие волны, как и при броске двух камней на воду.

Для имитации камней Юнг использовал непрозрачный экран с двумя отверстиями и источникам света за ним. Свет проходил через отверстия и на экране образовывался рисунок из светлых и темных полос. Светлые полосы образовывались там, где волны усиливали друг друга, а темные там, где тушили.

8. Клаус Йонссон и его эксперимент

В 1961 году Немецкий физик Клаус Йонссон доказал, что элементарные частицы имеют корпускулярно-волновую природу. Он провел для этого эксперимент аналогичный эксперименту Юнга, только заменив лучи света пучками электронов. В результате все равно удалось получить интерференционную картину.

9. Эксперимент Роберта Милликена

Еще в начале девятнадцатого века возникло представление о наличии у каждого тела электрического заряда, который является дискретным и определяется неделимыми элементарными зарядами. К тому моменту было введено понятие электрона, как носителя этого самого заряда, но обнаружить экспериментально эту частицу и вычислить ее заряд не удавалось.
Американскому физику Роберт Милликен удалось разработать идеальный образчик изящества в экспериментальной физике. Он изолировал заряженные капли воды между пластинами конденсатора. Затем с помощью рентгеновских лучей ионизировал воздух между этими же пластинами и менял заряд капель.

Ребята, мы вкладываем душу в сайт. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

Есть очень простые опыты, которые дети запоминают на всю жизнь. Ребята могут не понять до конца, почему это все происходит, но, когда пройдет время и они окажутся на уроке по физике или химии, в памяти обязательно всплывет вполне наглядный пример.

сайт собрал 7 интересных экспериментов, которые запомнятся детям. Все, что нужно для этих опытов, - у вас под рукой.

Огнеупорный шарик

Понадобится : 2 шарика, свечка, спички, вода.

Опыт : Надуйте шарик и подержите его над зажженной свечкой, чтобы продемонстрировать детям, что от огня шарик лопнет. Затем во второй шарик налейте простой воды из-под крана, завяжите и снова поднесите к свечке. Окажется, что с водой шарик спокойно выдерживает пламя свечи.

Объяснение : Вода, находящаяся в шарике, поглощает тепло, выделяемое свечой. Поэтому сам шарик гореть не будет и, следовательно, не лопнет.

Карандаши

Понадобится: полиэтиленовый пакет, простые карандаши, вода.

Опыт: Наливаем воду в полиэтиленовый пакет наполовину. Карандашом протыкаем пакет насквозь в том месте, где он заполнен водой.

Объяснение: Если полиэтиленовый пакет проткнуть и потом залить в него воду, она будет выливаться через отверстия. Но если пакет сначала наполнить водой наполовину и затем проткнуть его острым предметом так, что бы предмет остался воткнутым в пакет, то вода вытекать через эти отверстия почти не будет. Это связано с тем, что при разрыве полиэтилена его молекулы притягиваются ближе друг к другу. В нашем случае, полиэтилен затягивается вокруг карандашей.

Нелопающийся шарик

Понадобится: воздушный шар, деревянная шпажка и немного жидкости для мытья посуды.

Опыт: Смажьте верхушку и нижнюю часть средством и проткните шар, начиная снизу.

Объяснение: Секрет этого трюка прост. Для того, чтобы сохранить шарик, нужно проткнуть его в точках наименьшего натяжения, а они расположены в нижней и в верхней части шарика.

Цветная капуста

Понадобится : 4 стакана с водой, пищевые красители, листья капусты или белые цветы.

Опыт : Добавьте в каждый стакан пищевой краситель любого цвета и поставьте в воду по одному листу или цветку. Оставьте их на ночь. Утром вы увидите, что они окрасились в разные цвета.

Объяснение : Растения всасывают воду и за счет этого питают свои цветы и листья. Получается это благодаря капиллярному эффекту, при котором вода сама стремится заполнить тоненькие трубочки внутри растений. Так питаются и цветы, и трава, и большие деревья. Всасывая подкрашенную воду, они меняют свой цвет.

Плавающее яйцо

Понадобится : 2 яйца, 2 стакана с водой, соль.

Опыт : Аккуратно поместите яйцо в стакан с простой чистой водой. Как и ожидалось, оно опустится на дно (если нет, возможно, яйцо протухло и не стоит возвращать его в холодильник). Во второй стакан налейте теплой воды и размешайте в ней 4-5 столовых ложек соли. Для чистоты эксперимента можно подождать, пока вода остынет. Потом опустите в воду второе яйцо. Оно будет плавать у поверхности.

Объяснение : Тут все дело в плотности. Средняя плотность яйца гораздо больше, чем у простой воды, поэтому яйцо опускается вниз. А плотность соляного раствора выше, и поэтому яйцо поднимается вверх.

Кристаллические леденцы

Понадобится : 2 стакана воды, 5 стаканов сахара, деревянные палочки для мини-шашлычков, плотная бумага, прозрачные стаканы, кастрюля, пищевые красители.

Опыт : В четверти стакана воды сварите сахарный сироп с парой столовых ложек сахара. Высыпьте немного сахара на бумагу. Затем нужно обмакнуть палочку в сироп и собрать ею сахаринки. Далее распределите их равномерно на палочке.

Оставьте палочки на ночь сушиться. Утром в 2 стаканах воды на огне растворите 5 стаканов сахара. Минут на 15 можно оставить сироп остывать, но сильно остыть он не должен, иначе кристаллы не будут расти. Потом разлейте его по банкам и добавьте разные пищевые красители. Заготовленные палочки опустите в банку с сиропом так, чтобы они не касались стенок и дна банки, в этом поможет бельевая прищепка.

Объяснение : С остыванием воды растворимость сахара понижается, и он начинает выпадать в осадок и оседать на стенках сосуда и на вашей палочке с затравкой из сахарных крупинок.

Зажженная спичка

Понадобятся : Спички, фонарик.

Опыт : Зажгите спичку и держите на расстоянии 10-15 сантиметров от стены. Посветите на спичку фонариком, и увидите, что на стене отражается только ваша рука и сама спичка. Казалось бы, очевидно, но я никогда об этом не задумывался.

Объяснение : Огонь не отбрасывает тени, так как не препятствует прохождению света сквозь себя.