Атомарная масса углерода. Строение атома углерода — Гипермаркет знаний

Углерод способен образовывать несколько аллотропных модификаций. Это алмаз (наиболее инертная аллотропная модификация), графит, фуллерен и карбин.

Древесный уголь и сажа представляют собой аморфный углерод. Углерод в таком состоянии не имеет упорядоченной структуры и фактически состоит из мельчайших фрагментов слоев графита. Аморфный углерод, обработанный горячим водяным паром, называют активированным углем. 1 грамм активированного угля из-за наличия в нем множества пор имеет общую поверхность более трехсот квадратных метров! Благодаря своей способности поглощать различные вещества активированный уголь находит широкое применение как наполнитель фильтров, а также как энтеросорбент при различных видах отравлений.

С химической точки зрения аморфный углерод является наиболее активной его формой, графит проявляет среднюю активность, а алмаз является крайне инертным веществом. По этой причине, рассматриваемые ниже химические свойства углерода следует прежде всего относить к аморфному углероду.

Восстановительные свойства углерода

Как восстановитель углерод реагирует с такими неметаллами как, например, кислород, галогены, сера.

В зависимости от избытка или недостатка кислорода при горении угля возможно образование угарного газа CO или углекислого газа CO 2:

При взаимодействии углерода со фтором образуется тетрафторид углерода:

При нагревании углерода с серой образуется сероуглерод CS 2:

Углерод способен восстанавливать металлы после алюминия в ряду активности из их оксидов. Например:

Также углерод реагирует и с оксидами активных металлов, однако в этом случае наблюдается, как правило, не восстановление металла, а образование его карбида:

Взаимодействие углерода с оксидами неметаллов

Углерод вступает в реакцию сопропорционирования с углекислым газом CO 2:

Одним из наиболее важных с промышленной точки зрения процессов является так называемая паровая конверсия угля . Процесс проводят, пропуская водяной пар через раскаленный уголь. При этом протекает следующая реакция:

При высокой температуре углерод способен восстанавливать даже такое инертное соединение как диоксид кремния. При этом в зависимости от условия возможно образование кремния или карбида кремния (карборунда ):

Также углерод как восстановитель реагирует с кислотами окислителями, в частности, концентрированными серной и азотной кислотами:

Окислительные свойства углерода

Химический элемент углерод не отличается высокой электроотрицательностью, поэтому образуемые им простые вещества редко проявляют окислительные свойства по отношению к другим неметаллам.

Примером таких реакций является взаимодействие аморфного углерода с водородом при нагревании в присутствии катализатора:

а также с кремнием при температуре 1200-1300 о С:

Окислительные свойства углерод проявляет по отношению к металлам. Углерод способен реагировать с активными металлами и некоторыми металлами средней активности. Реакции протекают при нагревании:

Карбиды активных металлов гидролизуются водой:

а также растворами кислот-неокислителей:

При этом образуются углеводороды, содержащие углерод в той же степени окисления, что и в исходном карбиде.

Химические свойства кремния

Кремний может существовать, как и углерод в кристаллическом и аморфном состоянии и, также, как и в случае углерода, аморфный кремний существенно более химически активен, чем кристаллический.

Иногда аморфный и кристаллический кремний, называют его аллотропными модификациями, что, строго говоря, не совсем верно. Аморфный кремний представляет собой по сути конгломерат беспорядочно расположенных друг относительно друга мельчайших частиц кристаллического кремния.

Взаимодействие кремния с простыми веществами

неметаллами

При обычных условиях кремний ввиду своей инертности реагирует только со фтором:

С хлором, бромом и йодом кремний реагирует только при нагревании. При этом характерно, что в зависимости от активности галогена, требуется и соответственно различная температура:

Так с хлором реакция протекает при 340-420 о С:

С бромом – 620-700 о С:

С йодом – 750-810 о С:

Реакция кремния с кислородом протекает, однако требует очень сильного нагревания (1200-1300 о С) ввиду того, что прочная оксидная пленка затрудняет взаимодействие:

При температуре 1200-1500 о С кремний медленно взаимодействует с углеродом в виде графита с образованием карборунда SiC – вещества с атомной кристаллической решеткой подобной алмазу и почти не уступающего ему в прочности:

С водородом кремний не реагирует.

металлами

Ввиду своей низкой электроотрицательности кремний может проявлять окислительные свойства лишь по отношению к металлам. Из металлов кремний реагирует с активными (щелочными и щелочноземельными), а также многими металлами средней активности. В результате такого взаимодействия образуются силициды:

Взаимодействие кремния со сложными веществами

С водой кремний не реагирует даже при кипячении, однако аморфный кремний взаимодействует с перегретым водяным паром при температуре около 400-500 о С. При этом образуется водород и диоксид кремния:

Из всех кислот кремний (в аморфном состоянии) реагирует только с концентрированной плавиковой кислотой:

Кремний растворяется в концентрированных растворах щелочей. Реакция сопровождается выделением водорода.

В состоянии соединений углерод входит в состав так называемых органических веществ, т. е. множества веществ, находящихся в теле всякого растения и животного. Он находится в виде углекислого газа в воде и воздухе, а в виде солей углекислоты и органических остатков в почве и массе земной коры. Разнообразие веществ, составляющих тело животных и растений, известно каждому. Воск и масло, скипидар и смола, хлопчатая бумага и белок, клеточная ткань растений и мускульная ткань животных, винная кислота и крахмал - все эти и множество иных веществ, входящих в ткани и соки растений и животных, представляют соединения углеродистые. Область соединений углерода так велика, что составляет особую отрасль химии, т. е. химии углеродистых или, лучше, углеводородистых соединений».

Эти слова из «Основ химии» Д. И. Менделеева служат как бы развернутым эпиграфом к нашему рассказу о жизненно важном элементе - углероде. Впрочем, есть здесь один тезис, с которым, с точки зрения современной науки о веществе, можно и поспорить, но об этом ниже.

Вероятно, пальцев на руках хватит, чтобы пересчитать химические элементы, которым не была посвящена хотя бы одна научная книга. Но самостоятельная научно-популярная книга - не какая-нибудь брошюрка на 20 неполных страницах с обложкой из оберточной бумаги, а вполне солидный том объемом почти в 500 страниц - есть в активе только одного элемента - углерода.

И вообще литература по углероду - богатейшая. Это, во-первых, все без исключения книги и статьи химиков- органиков; во-вторых, почти все, что касается полимеров; в-третьих, бесчисленные издания, связанные с горючими ископаемыми; в-четвертых, значительная часть медикобиологической литературы...

Поэтому не будем пытаться объять необъятное (ведь не случайно авторы популярной книги об элементе № 6 назвали ее «Неисчерпаемый»!, а сконцентрируем внимание лишь на главном из главного - попытаемся увидеть углерод с трех точек зрения.

Углерод - один из немногочисленных элементов «без роду, без племени». История общения человека с этим веществом уходит во времена доисторические. Имя первооткрывателя углерода неизвестно, неизвестно и то, какая из форм элементного углерода - алмаз или графит - была открыта раньше. И то и другое случилось слишком давно. Определенно утверждать можно лишь одно: до алмаза и до графита было открыто вещество, которое еще несколько десятилетий назад считали третьей, аморфной формой элементного углерода - уголь. Но в действительности уголь, даже древесный, это не чистый углерод. В нем есть и водород, и кислород, и следы других элементов. Правда, их можно удалить, но и тогда углерод угля не станет самостоятельной модификацией элементного углерода. Это было установлено лишь во второй четверти нашего века. Структурный анализ показал, что аморфный углерод - это по существу тот же графит. А значит, никакой он не аморфный, а кристаллический; только кристаллы его очень мелкие и больше в них дефектов. После этого стали считать, что углерод на Земле существует лишь в двух элементарных формах - в виде графита и алмаза.

Вам никогда не приходилось задумываться о причинах резкого «водораздела» свойств, который проходит во втором коротком периоде менделеевской таблицы по линии, отделяющей углерод от следующего за ним азота? Азот , кислород , фтор при обычных условиях газообразны. Углерод - в любой форме - твердое тело. Температура плавления азота - минус 210,5°С, а углерода (в виде графита под давлением свыше 100 атм) - около плюс 4000°С...

Дмитрий Иванович Менделеев первым предположил, что эта разница объясняется полимерным строением молекул углерода. Он писал: «Если бы углерод образовывал молекулу C 2 , как и O 2 , то был бы газом». И далее: «Способность атомов угля соединяться между собой и давать сложные молекулы проявляется во всех углеродистых соединениях. Ни в одном из элементов такая способность к усложнению не развита в такой мере, как в углероде. Поныне нет основания для определения меры полимеризации угольной, графитной, алмазной молекулы, только можно думать, что в них содержится С п, где n есть большая величина».

Углерод и его полимеры

Это предположение подтвердилось в наше время. И графит, и алмаз - полимеры, состоящие из одинаковых, только углеродных атомов.

По меткому замечанию профессора Ю.В. Ходакова, «если исходить из природы преодолеваемых сил, профессию гранильщика алмазов можно было бы отнести к химическим профессиям». Действительно, гранильщику приходится преодолевать не сравнительно слабые силы межмолекулярного взаимодействия, а силы химической связи, которыми объединены в молекулу алмаза углеродные атомы. Любой кристалл алмаза, даже огромный, шестисотграммовый «Куллинан» - это по существу одна молекула, молекула в высшей степени регулярного, почти идеально построенного трехмерного полимера.

Иное дело графит. Здесь полимерная упорядоченность распространяется только в двух направлениях - по плоскости, а не в пространстве. В куске графита эти плоскости образуют достаточно плотную пачку, слои которой соединены между собой не химическими силами, а более слабыми силами межмолекулярного взаимодействия. Вот почему так просто - даже от соприкосновения с бумагой - расслаивается графит. В то же время разорвать графитовую пластинку в поперечном направлении весьма сложно - здесь противодействует химическая связь.

Именно особенности молекулярного строения объясняют огромную разницу в свойствах графита и алмаза. Графит отлично проводит тепло и электричество, алмаз - изолятор. Графит совершенно не пропускает света - алмаз прозрачен. Какими бы способами ни окисляли алмаз, продуктом окисления будет только CO 2 . А окисляя графит, можно при желании получить несколько промежуточных продуктов, в частности графитовую (переменного состава) и меллитовую C 6 (COOH) 6 кислоты. Кислород как бы вклинивается между слоями графитовой пачки и окисляет лишь некоторые углеродные атомы. В кристалле алмаза слабых мест нет, и поэтому возможно или полное окисление или полное неокисление - третьего не дано...

Итак, есть «пространственный» полимер элементного углерода, есть «плоскостной». В принципе давно уже допускалось существование и «одномерного» - линейного полимера углерода, но в природе он не был найден.

Не был найден до поры до времени. Через несколько лет после синтеза линейный полимер углерода был найден в метеоритном кратере, на территории ФРГ. А получили его первыми советские химики В. В. Коршак, А. М. Сладков, В. И. Касаточкин и Ю.П. Кудрявцев. Линейный полимер углерода назвали карбином. Внешне он выглядит как черный мелкокристаллический порошок, обладает полупроводниковыми свойствами, причем под действием света электропроводность карбина сильно увеличивается. Открылись у карбина и вовсе неожиданные свойства. Оказалось, например, что кровь при контакте с ним не образует сгустков - тромбов, поэтому волокно с покрытием из карбина стали применять при изготовлении неотторгаемых организмом искусственных кровеносных сосудов.

По словам первооткрывателей карбина, самым сложным для них было определить, какими же связями соединены в цепочку углеродные атомы. В нем могли быть чередующиеся одинарные и тройные связи (-C = C-C=C -С=), а могли быть только двойные (=C=C=C=C=)... А могло быть и то и другое одновременно. Лишь через несколько лет Коршаку и Сладкову удалось доказать, что двойных связей в карбине нет. Однако, поскольку теория допускала существование углеродного линейного полимера только с двойными связями, была предпринята попытка получить эту разновидность - по существу, четвертую модификацию элементного углерода.

Углерод в минералах

Это вещество было получено в Институте элементоорганических соединений АН СССР. Новый линейный полимер углерода назвали поликумуленом. А сейчас известно не меньше восьми линейных полимеров углерода, отличающихся один от другого строением кристаллической решетки. В зарубежной литературе все их называют карбинами.

Этот элемент всегда четырехвалентен, но, поскольку в периоде он находится как раз посередине, степень его окисления в разных обстоятельствах бывает то +4, то - 4. В реакциях с неметаллами он электроположителен, с металлами - наоборот. Даже в тех случаях, когда связь не ионная, а ковалентная, углерод остается верен себе - его формальная валентность остается по-прежнему равной четырем.

Весьма немногочисленны соединения, в которых углерод хотя бы формально проявляет валентность, отличную от четырех. Общеизвестно лишь одно такое соединение - CO, угарный газ, в котором углерод кажется двухвалентным. Именно кажется, потому что в действительности здесь более сложный тип связи. Атомы углерода и кислорода соединены 3-ковалентной поляризованной связью, и структурную формулу этого соединения пишут так: O+=C".

В 1900 г. М. Гомберг получил органическое соединение трифенилметил (C 6 H 5) 3 C. Казалось, что атом углерода здесь трехвалентен. Но позже выяснилось, что и на этот раз необычная валентность - сугубо формальная. Трифенилметил и его аналоги - это свободные радикалы, только в отличие от большинства радикалов достаточно стабильные.

Исторически сложилось так, что лишь очень немногие соединения углерода остались «под крышей» неорганической химии. Это окислы углерода, карбиды - его соединения с металлами, а также бором и кремнием, карбонаты - соли слабейшей угольной кислоты, сероуглерод CS 2 , цианистые соединения. Приходится утешаться тем, что, как это часто бывает (или бывало) на производстве, недоработку по номенклатуре компенсирует «вал». Действительно, наибольшая часть углерода земной коры содержится не в организмах растений и животных, не в угле, нефти и всей прочей органике, вместе взятой, а всего в двух неорганических соединениях - известняке CaCO 3 и доломите MgCa(CO 3) 2 . Углерод входит в состав еще нескольких десятков минералов, достаточно вспомнить о мраморе CaCO 3 (с добавками), малахите Cu 2 (OH) 2 CO 3 , минерале цинка смитсоните ZnCO 3 ... Есть углерод и в магматических породах, и в кристаллических сланцах.

Очень редки минералы, в состав которых входят карбиды. Как правило, это вещества особенно глубинного происхождения; поэтому ученые предполагают, что в ядре земного шара есть углерод.

Для химической промышленности углерод и его неорганические соединения представляют значительный интерес - чаще как сырье, реже как конструкционные материалы.

Многие аппараты химических производств, например теплообменники, изготавливают из графита. И это естественно: графит обладает большой термостойкостью и химической стойкостью и при этом прекрасно проводит тепло. Кстати, благодаря этим же свойствам графит стал важным материалом реактивной техники. Из графита сделаны рули, работающие непосредственно в пламени сопловых аппаратов. В воздухе воспламенить графит практически невозможно (даже в чистом кислороде сделать это непросто), а чтобы испарить графит, нужна температура, намного более высокая, чем развивающаяся даже в ракетном двигателе. И, кроме того, при нормальном давлении графит, как и гранит, не плавится.

Без графита трудно представить современное электрохимическое производство. Графитовые электроды используются не только электрометаллургами, но и химиками. Достаточно вспомнить, что в электролизерах, применяемых для получения каустической соды и хлора, аноды - графитовые.

Использование углерода

Об использовании соединений углерода в химической промышленности написаны многие книги. Карбонат кальция, известняк, служит сырьем в производстве извести, цемента, карбида кальция. Другой минерал - доломит - «праотец» большой группы доломитовых огнеупоров. Карбонат и гидрокарбонат натрия - кальцинированная и питьевая сода. Одним из основных потребителей кальцинированной соды была и остается стекольная промышленность, на нужды которой идет примерно треть мирового производства Na 2 CO 3 .

И наконец, немного о карбидах. Обычно, когда говорят карбид, имеют в виду карбид кальция - источник ацетилена, а следовательно, многочисленных продуктов органического синтеза. Но карбид кальция, хотя и самое известное, но далеко не единственное очень важное и нужное вещество этой группы. Карбид бора B 4 C - важный материал атомной

техники , карбид кремния SiC или карборунд - важнейший абразивный материал. Карбидам многих металлов свойственны высокая химическая стойкость и исключительная твердость; карборунд, к примеру, лишь немного уступает алмазу. Его твердость по шкале Mooca равна 9,5-9,75 (алмаза - 10). Но карборунд дешевле алмаза. Его получают в электрических печах при температуре около 2000°С из смеси кокса и кварцевого песка.

По словам известного советского ученого академика И.Л. Кнунянца, органическую химию можно рассматривать как своеобразный мост, перекинутый наукой от неживой природы к высшей ее форме - жизни. А всего полтора столетия назад лучшие химики того времени сами считали и учили своих последователей, что органическая химия это наука о веществах, образующихся при участии и под руководством некоей странной «материи» - жизненной силы. Но скоро эту силу отправили на свалку естествознания. Синтезы нескольких органических веществ - мочевины, уксусной кислоты, жиров, сахароподобных веществ - сделали ее попросту ненужной.

Появилось классическое определение К. Шорлеммера, не потерявшее смысла и 100 лет спустя: «Органическая химия есть химия углеводородов и их производных, то есть продуктов, образующихся при замене водорода другими атомами или группами атомов».

Итак, органика - это химия даже не одного элемента, а лишь одного класса соединений этого элемента. Зато какого класса! Класса, поделившегося не только на группы и подгруппы - на самостоятельные науки. Из органики вышли, от органики отпочковались биохимия, химия синтетических полимеров, химия биологически активных и лекарственных соединений...

Сейчас известны миллионы органических соединений (соединений углерода!) и около ста тысяч соединений всех остальных элементов, вместе взятых.

Общеизвестно, что на углеродной основе построена жизнь. Но почему же именно углерод - одиннадцатый по распространенности на Земле элемент - взял на себя труднейшую задачу быть основой всего живого?

Ответ на этот вопрос неоднозначен. Во-первых, «ни в одном из элементов такой способности к усложнению не развито в такой мере, как в углероде». Во-вторых, углерод способен соединяться с большинством элементов, причем самыми разнообразными способами. В-третьих, связь атомов углерода между собой, так же как и с атомами водорода, кислорода, азота, серы, фосфора и прочих элементов, входящих в состав органических веществ, может разрушаться под воздействием природных факторов. Поэтому углерод непрерывно круговращается в природе: из атмосферы - в растения, из растений - в животные организмы, из живого - в мертвое,

из мертвого - в живое...

Четыре валентности атома углерода - как четыре руки. А если соединились два таких атома, то «рук» становится уже шесть. Или - четыре, если на образование пары затрачено по два электрона (двойная связь). Или - всего две, если связь, как в ацетилене, тройная. Но эти связи (их называют ненасыщенными) подобны бомбе в кармане или джину в бутылке. Они скрыты до поры до времени, но в нужный момент вырываются на волю, чтобы взять свое в бурной, азартной игре химических взаимодействий и превращений. Самые разнообразные конструкции образуются в результате этих «игрищ», если в них участвует углерод. В редакции «Детской энциклопедии» подсчитали, что из 20 атомов углерода и 42 атомов водорода можно получить 366 319 различных углеводородов, 366 319 веществ состава С 20 Н42. А если в «игре» не шесть десятков участников, а несколько тысяч; если среди них представители не двух «команд», а, скажем, восьми!

Где углерод, там многообразие. Где углерод, там сложности. И самые разные по молекулярной архитектуре конструкции. Простенькие цепочки, как в бутане CH 3 -CH 2 -CH 2 -CH 3 или полиэтилене -CH 2 -CH 2 -CH 2 - CH 2 -, и разветвленные структуры простейшая из них - изобутан.

Углерод известен с глубокой древности. В 1778 К. Шееле, нагревая графит с селитрой, обнаружил, что при этом, как и при нагревании угля с селитрой, выделяется углекислый газ. Химический состав алмаза был установлен в результате опытов А.Лавуазье (1772) по изучения горения алмаза на воздухе и исследований С.Теннанта (1797), доказавшего, что одинаковые количества алмаза и угля дают при окислении равные количества углекислого газа. Углерод как химический элемент был признан только в 1789 А.Лавуазье. В начале XIX в. старое слово уголь в русской химической литературе иногда заменялось словом "углетвор" (Шерер, 1807; Севергин, 1815); с 1824 г. Соловьев ввел название углерод. Латинское название сarboneum углерод получил от сarbo - уголь.

Получение:

Неполное сжигание метана: СН 4 + О 2 = С + 2Н 2 О (сажа);
Сухая перегонка древесины, каменного угля (древесный уголь, кокс).

Физические свойства:

Известны несколько кристаллических модификаций углерода: графит,алмаз, карбин, графен.
Графит - серо-черная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском. При комнатной температуре и нормальном давлении (0,1 Мн/м 2 , или 1кгс/см 2) графит термодинамически стабилен. При атмосферном давлении и температуре около 3700°С графит возгоняется. Жидкий углерод может быть получен при давлении выше 10,5 Мн/м 2 (1051 кгс/см2) и температурах выше 3700°С. Cтруктура мелкокристаллического графита лежит в основе строения "аморфного" углерода, который не представляет собой самостоятельной модификации (кокс, сажа, древесный уголь). Нагревание некоторых разновидностей "аморфного" углерода выше 1500-1600°С без доступа воздуха вызывает их превращение в графит. Физические свойства "аморфного" углерода очень сильно зависят от дисперсности частиц и наличия примесей. Плотность, теплоемкость, теплопроводность и электропроводность "аморфного" углерода всегда выше, чем графита.
Алмаз - очень твердое, кристаллическое вещество. Кристаллы имеют кубическую гранецентрированную решетку: а=3,560. При комнатной температуре и нормальном давлении алмаз метастабилен. Заметное превращение алмаза в графит наблюдается при температурах выше 1400°С в вакууме или в инертной атмосфере.
Карбин получен искусственно. Он представляет собой мелкокристаллический порошок черного цвета (плотность 1,9 - 2 г/см 3). Построен из длинных цепочек атомов С, уложенных параллельно друг другу.
Графен - мономолекулярный слой (слой, толщиной в одну молекулу) атомов углерода, которые плотно упакованы в двухмерную решетку, по форме напоминающую пчелиные соты. Графен был впервые получен и исследован Александром Геймом и Константином Новоселовым, которые стали за это открытие лауреатами Нобелевской премии по физике 2010 года.

Химические свойства:

Углерод малоактивен, на холоду реагирует только с F 2 (образуя CF 4). При нагревании реагирует со многими неметаллами и сложными веществами, проявляя восстановительные свойства:
CO 2 + C = CO выше 900°С
2H 2 O + C = CO 2 + H 2 выше 1000°С или H 2 O + C = CO + H 2 выше 1200°С
CuO + C = Cu + CO
HNO 3 + 3C = 3 CO 2 + 4 NO + 2 H 2 O
Слабые окислительные свойства проявляются в реакциях с металлами, водородом
Ca + С = CaС 2 карбид кальция
Si + С = CSi карборунд
CaO + C = CaC 2 + CO

Важнейшие соединения:

Оксиды СО, СО 2
Угольная кислота Н 2 СО 3 , карбонаты кальция (мел, мрамор, кальцит, известняк),
Карбиды СаС 2
Органические вещества , например углеводороды, белки, жиры

Применение:

Графит используется в карандашной промышленности, также исполузется как смазка при особо высоких или низких температурах. Алмаз используется в качестве абразивного материала, драгоценных камней в ювелирных украшениях. Алмазным напылением обладают шлифовальные насадки бормашин. В фармакологии и медицине используются соединения углерода - производные угольной кислоты и карбоновых кислот, различные гетероциклы, полимеры и др. Так, карболен (активированный уголь), применяется для абсорбции и выведения из организма различных токсинов; графит (в виде мазей) - для лечения кожных заболеваний; радиоактивные изотопы углерода - для научных исследований (радиоуглеродный анализ). Углерод в виде ископаемого топлива: угля и углеводородов (нефть, природный газ) - один из важнейших источников энергии для человечества.

Карпенко Д.
ХФ ТюмГУ 561гр.

Источники:
Углерод // Википедия. Дата обновления: 18.01.2019. URL: https://ru.wikipedia.org/?oldid=97565890 (дата обращения: 04.02.2019).

Углерод является шестым элементом периодической системы Менделеева. Его атомный вес равен 12.


Углерод находится во втором периоде системы Менделеева и в четвёртой группе этой системы.


Номер периода сообщает нам, что шесть электронов углерода располагаются на двух энергетических уровнях.


А четвёртый номер группы говорит, что на внешнем энергетическом уровне у углерода находится четыре электрона. Два из них это спаренные s -электроны, а два другие – не спаренные р -электроны.


Структура внешнего электронного слоя атома углерода может быть выражена следующими схемами:

Каждая ячейка вэтих схемах означает отдельную электронную орбиталь, стрелка – элетрон, находящийся на орбитали. Две стрелки внутри одной ячейки – это два электрона, находящиеся на одной орбитали, но имеющие противоположно направленные спины.


При возбуждении атома (при сообщени ему энергии) один из спаренных S -электронов занимает р -орбиталь.


Возбуждённый атом углерода может учавствовать в образовании четырёх ковалентных связей. Поэтому в подавляющем большинстве своих соединений углерод проявляет валентность, равную четырем.


Так, простейшее органическое соединение углеводород метан имеет состав СН 4 . Строение его может быть выражено структурной или электронной формулами:



Электронная формула показывает, что атом углерода в молекуле метана имеет устойчивую восьмиэлектронную внешнюю оболочку, а атомы водорода – устойчивую двухэлектронную оболочку.


Все четыре ковалентных связи углерода в метане (и в других подобных соединениях) равноценны и симметрично направлены в пространстве. Атом углерода находится как бы в центре тетраэдра (правильной четырёхугольной пирамиды), а четыре соединённых с ним атома (в случае метана – четыре атома водорода) в вершинах тетраэдра.



Углы между направлениями любой пары связей одинаковы и составляют 109 градусов 28 минут.


Это объясняется тем, что в атоме углерода, когда он образует ковалентные связи с четырьмя другими атомами, из одной s - и трёх p -орбиталей в результате sp 3 -гибридизации образуются чтыре симметрично расположенные в пространстве гибридные sp 3 -орбитали, вытянутые в направлении к вершинам тетраэдра.

Особенность свойств углерода.

Количество электронов на внешнем энергетическом уровне является главным фактором, определяющим химические свойства элемента.


В левой части периодической системы расположены элементы с малозаполненным внешним электронным уровнем. У элементов первой группы на внешнем уровне один электрон, у элементов второй группы – два.


Элементы этих двух групп являются металлами . Они легко окисляются, т.е. теряют свои внешние электроны ипревращаются в положительные ионы.


В правой части периодической системы, наоборот, находятся неметаллы (окислители) . В сравнении с металлами они обладают ядром с большим числом протонов. Такое массивное ядро обеспечивает гораздо более сильное притяжение своего электронного облака.


Такие элементы с большим трудом теряют свои электроны, зато непрочь присоединить к себе дополнительные электроны других атомов, т.е. окислить их, а самим, при этом, превратиться в отрицательный ион.


Металлические свойства элементов по мере возрастания номера группы в периодической системе ослабляются, а их способность окислять другие элементы увеличивается.


Углерод находится в четвёртой группе, т.е. как раз посередине между металлами, легко отдающими электроны, и неметаллами, легко эти электроны присоединяющими.


По этой причине углерод не обладает ярко выраженной склонности отдавать или присоединять электроны .

Углеродные цепи.

Исключительным свойством углерода, обуславливающим многообразие органических соединений, является способность его атомов соединяться прочными ковалентными связями друг с другом, образуя углеродные схемы практически неограниченной длины.


Кроме углерода, цепи из одинаковых атомов образует его аналог из IV группы – кремний. Однако такие цепи содержат не более шести атомов Si. Известны длинные цепи из атомов серы, но содержащие их соединения непрочны.


Валентности атомов углерода, не задействованные для взаимного соединения, используются на присоединение других атомов или групп (в углеводородах – для присоединения водорода).


Так углеводороды этан (С 2 Н 6 ) и пропан (С 3 Н 8 ) содержат цепи соответственно из двух и трёх атомов углерода. Строение их выражают следующие структурные и электронные формулы:



Известны соединения, содержащие в цепях сотни и более атомов углерода.


Вследствии тетраэдрической направленности связей углерода, его атомы, входящие в цепь, располагаются не на прямой, а зигзагообразно. Причём, благодаря возможности вращения атомов вокруг оси связи, цепь в пространстве может принимать различные формы (конформации):

Такая структура цепей даёт возможность сближаться концевым или другим не смежным атомам углерода. В результате возникновения связи между этими атомами углеродные цепи могут замыкаться в кольца (циклы), например:



Таким образом, многообразие органических соединений определяется и тем, что при одинаковом числе атомов углерода в молекуле возможны соединения с открытой незамкнутой цепью углеродных атомов, а также вещества, молекулы которых содержат циклы.

Простые и кратные связи.

Ковалентные связи между атомами углерода, образованные одной парой обобщённых электронов, называются простыми связями.



Связь между атомами углерода может осуществляться не одной, а двумя или тремя общими парами электронов. Тогда получаются цепи с кратными – двойными или тройными связями. Эти связи можно изобразить следующим образом:



Простейшие соединения, содержащие кратные связи – углеводороды этилен (с двойной связью) и ацетилен (с тройной связью):



Углеводороды с кратными связями называются непредельными или ненасыщенными. Этилен и ацетилен – первые представители двух гомологических рядов – этиленовых и ацетиленовых углеводородов.

Углерод (лат. Carboneum), С, химический элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Известны два стабильных изотопа: 12 С (98,892%) и 13 С (1,108%). Из радиоактивных изотопов наиболее важен 14 С с периодом полураспада(Т ½ = 5,6·10 3 лет). Небольшие количества 14 С (около 2·10 -10 % по массе) постоянно образуются в верхних слоях атмосферы при действии нейтронов космического излучения на изотоп азота 14 N. По удельной активности изотопа 14 С в остатках биогенного происхождения определяют их возраст. 14 С широко используется в качестве изотопного индикатора.

Историческая справка. Углерод известен с глубокой древности. Древесный уголь служил для восстановления металлов из руд, алмаз - как драгоценный камень. Значительно позднее стали применять графит для изготовления тиглей и карандашей.

В 1778 году К. Шееле, нагревая графит с селитрой, обнаружил, что при этом, как и при нагревании угля с селитрой, выделяется углекислый газ. Химический состав алмаза был установлен в результате опытов А. Лавуазье (1772) по изучению горения алмаза на воздухе и исследований С. Теннанта (1797), доказавшего, что одинаковые количества алмаза и угля дают при окислении равные количества углекислого газа. Углерод был признан химическим элементом в 1789 году Лавуазье. Латинское название сагboneum Углерод получил от carbo - уголь.

Распространение Углерода в природе. Среднее содержание Углерода в земной коре 2,3·10 -2 % по массе (1·10 -2 в ультраосновных, 1·10 -2 - в основных, 2·10 -2 - в средних, 3·10 -2 - в кислых горных породах). Углерод накапливается в верхней части земной коры (биосфере): в живом веществе 18% Углерода, древесине 50%, каменном угле 80%, нефти 85%, антраците 96%. Значительная часть Углерода литосферы сосредоточена в известняках и доломитах.

Число собственных минералов Углерода - 112; исключительно велико число органических соединений Углерода - углеводородов и их производных.

С накоплением Углерода в земной коре связано накопление и многих других элементов, сорбируемых органическим веществом и осаждающихся в виде нерастворимых карбонатов, и т. д. Большую геохимическую роль в земной коре играют СО 2 и угольная кислота. Огромное количество СО 2 выделяется при вулканизме - в истории Земли это был основные источник Углерода для биосферы.

По сравнению со средним содержанием в земной коре человечество в исключительно больших количествах извлекает Углерод из недр (уголь, нефть, природный газ), так как эти ископаемые - основной источник энергии.

Огромное геохимическое значение имеет круговорот Углерода.

Углерод широко распространен также в космосе; на Солнце он занимает 4-е место после водорода, гелия и кислорода.

Физические свойства Углерода. Известны несколько кристаллических модификаций Углерода: графит, алмаз, карбин, лонсдейлит и другие. Графит - серо-черная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском. Построен из кристаллов гексагональной структуры: а = 2,462Å, c = 6,701Å. При комнатной температуре и нормальном давлении (0,1 Мн/м 2 , или 1 кгс/см 2) графит термодинамически стабилен. Алмаз - очень твердое, кристаллическое вещество. Кристаллы имеют кубическую гранецентрированную решетку: а = 3,560Å. При комнатной температуре и нормальном давлении алмаз метастабилен. Заметное превращение алмаза в графит наблюдается при температурах выше 1400 °С в вакууме или в инертной атмосфере. При атмосферном давлении и температуре около 3700 °С графит возгоняется. Жидкий Углерод может быть получен при давлениях выше 10,5 Мн/м 2 (105 кгс/см 2) и температурах выше 3700 °С. Для твердого Углерода (кокс, сажа, древесный уголь) характерно также состояние с неупорядоченной структурой - так называемых "аморфный" Углерод, который не представляет собой самостоятельной модификации; в основе его строения лежит структура мелкокристаллического графита. Нагревание некоторых разновидностей "аморфного" Углерода выше 1500-1600 °С без доступа воздуха вызывает их превращение в графит. Физические свойства "аморфного" Углерод очень сильно зависят от дисперсности частиц и наличия примесей. Плотность, теплоемкость, теплопроводность и электропроводность "аморфного" Углерода всегда выше, чем графита. Карбин получен искусственно. Он представляет собой мелкокристаллический порошок черного цвета (плотность 1,9-2 г/см 3). Построен из длинных цепочек атомов С, уложенных параллельно друг другу. Лонсдейлит найден в метеоритах и получен искусственно.

Химические свойства Углерода. Конфигурация внешней электронной оболочки атома Углерода 2s 2 2p 2 . Для Углерода характерно образование четырех ковалентных связей, обусловленное возбуждением внешней электронной оболочки до состояния 2sp 3 . Поэтому Углерод способен в равной степени как притягивать, так и отдавать электроны. Химическая связь может осуществляться за счет sp 3 -, sp 2 - и sp- гибридных орбиталей, которым соответствуют координационные числа 4, 3 и 2. Число валентных электронов Углерода и число валентных орбиталей одинаково; это одна из причин устойчивости связи между атомами Углерода.

Уникальная способность атомов Углерода соединяться между собой с образованием прочных и длинных цепей и циклов привела к возникновению громадного числа разнообразных соединений Углерода, изучаемых органической химией.

В соединениях Углерод проявляет степени окисления -4; +2; +4. Атомный радиус 0,77Å, ковалентные радиусы 0,77Å, 0,67Å, 0,60Å соответственно в одинарной, двойной и тройной связях; ионный радиус С 4- 2,60Å, С 4+ 0,20Å. При обычных условиях Углерод химически инертен, при высоких температурах он соединяется со многими элементами, проявляя сильные восстановительные свойства. Химическая активность убывает в ряду: "аморфный" Углерод, графит, алмаз; взаимодействие с кислородом воздуха (горение) происходит соответственно при температурах выше 300-500 °С, 600-700 °С и 850-1000 °С с образованием оксида углерода (IV) СО 2 и оксида углерода (II) СО.

СО 2 растворяется в воде с образованием угольной кислоты. В 1906 году О. Дильс получил недооксид Углерода С 3 О 2 . Все формы Углерода устойчивы к щелочам и кислотам и медленно окисляются только очень сильными окислителями (хромовая смесь, смесь концентрированных HNO 3 и КСlO 3 и других). "Аморфный" Углерод реагирует с фтором при комнатной температуре, графит и алмаз - при нагревании. Непосредственное соединение Углерода с хлором происходит в электрической дуге; с бромом и иодом Углерод не реагирует, поэтому многочисленные галогениды углерода синтезируют косвенным путем. Из оксигалогенидов общей формулы СОХ 2 (где X - галоген) наиболее известна хлороксид СОСl (фосген). Водород с алмазом не взаимодействует; с графитом и "аморфным" Углеродом реагирует при высоких температурах в присутствии катализаторов (Ni, Pt): при 600-1000 °С образуется в основном метан СН 4 , при 1500-2000 °С - ацетилен С 2 Н 2 ; в продуктах могут присутствовать также других углеводороды, например этан С 2 Н 6 , бензол С 6 Н 6 . Взаимодействие серы с "аморфным" Углеродом и графитом начинается при 700-800 °С, с алмазом при 900-1000 °С; во всех случаях образуется сероуглерод CS 2 . Другие соединения Углерода, содержащие серу (тиооксид CS, тионедооксид С 3 S 2 , серооксид COS и тиофосген CSCl 2), получают косвенным путем. При взаимодействии CS 2 с сульфидами металлов образуются тиокарбонаты - соли слабой тиоугольной кислоты. Взаимодействие Углерода с азотом с получением циана (CN) 2 происходит при пропускании электрического разряда между угольными электродами в атмосфере азота. Среди азотсодержащих соединений Углерода важное практическое значение имеют цианистый водород HCN (Синильная кислота) и его многочисленные производные: цианиды, галогенцианы, нитрилы и других При температурах выше 1000 °С Углерод взаимодействует со многими металлами, давая карбиды. Все формы Углерода при нагревании восстанавливают оксиды металлов с образованием свободных металлов (Zn, Cd, Cu, Рb и других) или карбидов (СаС 2 , Мо 2 С, WC, ТаС и других). Углерод реагирует при температурах выше 600-800 °С с водяным паром и углекислым газом (Газификация топлив). Отличительной особенностью графита является способность при умеренном нагревании до 300-400 °С взаимодействовать со щелочными металлами и галогенидами с образованием соединений включения типа С 8 Ме, С 24 Ме, С 8 Х (где X - галоген, Me - металл). Известны соединения включения графита с HNO 3 , H 2 SO 4 , FeCl 3 и другие (например, бисульфат графита C 24 SO 4 H 2). Все формы Углерода нерастворимы в обычных неорганических и органических растворителях, но растворяются в некоторых расплавленных металлах (например, Fe, Ni, Co).

Народнохозяйственное значение Углерода определяется тем, что свыше 90% всех первичных источников потребляемой в мире энергии приходится на органическое топливо, главенствующая роль которого сохранится и на ближайшие десятилетия, несмотря на интенсивное развитие ядерной энергетики. Только около 10% добываемого топлива используется в качестве сырья для основного органического синтеза и нефтехимического синтеза, для получения пластических масс и других.

Углерод в организме. Углерод - важнейший биогенный элемент, составляющий основу жизни на Земле, структурная единица огромного числа органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, а также многочисленные низкомолекулярные биологически активные вещества - витамины, гормоны, медиаторы и другие). Значительная часть необходимой организмам энергии образуется в клетках за счет окисления Углерода. Возникновение жизни на Земле рассматривается в современное науке как сложный процесс эволюции углеродистых соединений.

Уникальная роль Углерода в живой природе обусловлена его свойствами, которыми в совокупности не обладает ни один других элемент периодической системы. Между атомами Углерода, а также между Углеродом и другими элементами образуются прочные химические связи, которые, однако, могут быть разорваны в сравнительно мягких физиологических условиях (эти связи могут быть одинарными, двойными и тройными). Способность Углерода образовывать 4 равнозначные валентные связи с других атомами Углерода создает возможность для построения углеродных скелетов различных типов - линейных, разветвленных, циклических. Показательно, что всего три элемента - С, О и Н - составляют 98% общей массы живых организмов. Этим достигается определенная экономичность в живой природе: при практически безграничном структурном разнообразии углеродистых соединений небольшое число типов химических связей позволяет намного сократить количество ферментов, необходимых для расщепления и синтеза органических веществ. Особенности строения атома Углерода лежат в основе различных видов изомерии органических соединений (способность к оптической изомерии оказалась решающей в биохимической эволюции аминокислот, углеводов и некоторых алкалоидов).

Согласно общепринятой гипотезе А. И. Опарина, первые органических соединения на Земле имели абиогенное происхождение. Источниками Углерода служили метан (СН 4) и цианистый водород (HCN), содержавшиеся в первичной атмосфере Земли. С возникновением жизни единственным источником неорганического Углерода, за счет которого образуется все органическое вещество биосферы, является оксид углерода (IV) (СО 2), находящийся в атмосфере, а также растворенный в природных водах в виде НСО 3 . Наиболее мощный механизм усвоения (ассимиляции) Углерода (в форме СО 2) - фотосинтез - осуществляется повсеместно зелеными растениями (ежегодно ассимилируется около 100 млрд. т СО 2). На Земле существует и эволюционно более древний способ усвоения СО 2 путем хемосинтеза; в этом случае микроорганизмы-хемосинтетики используют не лучистую энергию Солнца, а энергию окисления неорганических соединений. Большинство животных потребляют Углерод с пищей в виде уже готовых органических соединений. В зависимости от способа усвоения органических соединений принято различать автотрофные организмы и гетеротрофные организмы. Применение для биосинтеза белка и других питательных веществ микроорганизмов, использующих в качестве единственного источника Углерода углеводороды нефти, - одна из важных современное научно-технических проблем.

Содержание Углерода в живых организмах в расчете на сухое вещество составляет: 34,5-40% у водных растений и животных, 45,4-46,5% у наземных растений и животных и 54% у бактерий. В процессе жизнедеятельности организмов, в основные за счет тканевого дыхания, происходит окислительный распад органических соединений с выделением во внешнюю среду СО 2 . Углерод выделяется также в составе более сложных конечных продуктов обмена веществ. После гибели животных и растений часть Углерода вновь превращается в СО 2 в результате осуществляемых микроорганизмами процессов гниения. Таким образом происходит круговорот Углерода в природе. Значительная часть Углерода минерализуется и образует залежи ископаемого Углерода: каменные угли, нефть, известняки и другие. Помимо основной функции - источника Углерода - СО 2 , растворенная в природных водах и в биологических жидкостях, участвует в поддержании оптимальной для жизненных процессов кислотности среды. В составе СаСО 3 Углерод образует наружный скелет многих беспозвоночных (например, раковины моллюсков), а также содержится в кораллах, яичной скорлупе птиц и других Такие соединения Углерода, как HCN, СО, ССl 4 , преобладавшие в первичной атмосфере Земли в добиологический период, в дальнейшем, в процессе биологической эволюции, превратились в сильные антиметаболиты обмена веществ.

Помимо стабильных изотопов Углерода, в природе распространен радиоактивный 14 С (в организме человека его содержится около 0,1 мккюри). С использованием изотопов Углерода в биологических и медицинских исследованиях связаны многие крупные достижения в изучении обмена веществ и круговорота Углерод в природе. Так, с помощью радиоуглеродной метки была доказана возможность фиксации Н 14 СО 3 - растениями и тканями животных, установлена последовательность реакций фотосинтеза, изучен обмен аминокислот, прослежены пути биосинтеза многих биологически активных соединений и т. д. Применение 14 С способствовало успехам молекулярной биологии в изучении механизмов биосинтеза белка и передачи наследственной информации. Определение удельной активности 14 С в углеродсодержащих органических остатках позволяет судить об их возрасте, что используется в палеонтологии и археологии.