Динамические характеристики расходомеров

Цель исследования - анализ российского рынка промышленных расходомеров .

Расходомер - устройство, измеряющее расход жидкого или газообразного вещества, проходящего сечение трубопровода.

Сам по себе расходомер (первичный датчик, сенсор) измеряет расход вещества в единицу времени. Для практического применения часто удобно знать расход не только в единицу времени, но и за определенный период. С этой целью выпускаются счетчики расхода, которые состоят из расходомера и интегрирующей электронной схемы (или набора схем для оценки других параметров потока). Обработка показаний расходомера может также выполняться удаленно при помощи проводного или беспроводного информационного интерфейса.

В самом общем случае выпускаемые расходомеры можно разделить на бытовые и промышленные . Промышленные расходомеры применяются для автоматизации различных производственных процессов, где существует ток жидкостей, газов, высоковязких сред. Бытовые расходомеры обычно используются для расчета коммунальных платежей и предназначены для измерения расхода водопроводной воды, теплоносителя, газа.

Объектом настоящего исследования являются промышленные расходомеры следующих типов: вихревые, массовые, ультразвуковые, электромагнитные . Расходомеры перечисленных типов получили наибольшее распространение в современных технологических процессах.

Тема промышленной расходометрии в свете федеральных инициатив по повышению энергоэффективности российской экономики является крайне актуальной. На этом рынке сложилась интересная конкуренция среди различных типов расходомеров: электромагнитные являются «золотым» стандартом промышленных процессов и оптимальным решением по соотношению цена/качество. Вместе с тем они могут применяться только совместно с электропроводящими жидкостями, и не могут быть использованы для измерения расхода нефти и газа - одной из главных задач расходометрии. По этой причине на смену электромагнитным расходомерам постепенно приходят массовые, ультразвуковые и вихревые. Каждый из перечисленных типов имеет как свои преимущества, так и свои недостатки.

Российский рынок расходометрии в сильной степени зависит от импортной продукции . Доля импорта в рассматриваемый хронологический период неизменно превышала 50%, а такие компании как Endress+Hauser, Krohne, Yokogawa, Emerson, Siemens прочно закрепились на рынке. Российские производители имеют сильные позиции, преимущественно в сегменте бытовых расходомеров.

Хронологические рамки исследования: 2008-2010 гг.; прогноз - 2011-2015 гг.

География исследования: Российская Федерация.

Отчет состоит из 6 частей и 17 разделов .

В первой части приведены общие сведения об объекте исследования.

В первом разделе представлены основные определения.

Во втором разделе описаны основные типы расходомеров, составляющие объект исследования, и не относящиеся к объекту исследования. В заключении раздела приведена сводная таблица типовых характеристик расходомеров различных видов.

В третьем разделе проанализированы области применения расходомеров.

В четвертом разделе приведено описание мирового рынка: количественные характеристики, структура, тенденции, перспективные области использования.

Вторая часть посвящена описанию российского рынка расходомеров.

В пятом-восьмом разделах представлены основные количественные характеристики российского рынка расходомеров: объем за рассматриваемый период, динамика, десять ведущих производителей, структура рынка по рассматриваемым типам, характеристики внутреннего производства.

В третьей части содержатся данные внешней торговли расходомерами.

Девятый раздел посвящен описанию методологии анализа внешней торговли.

В десятом и одиннадцатом разделе представлен анализ соответственно импортных и экспортных поставок. В каждом разделе приведены количественные характеристики за рассматриваемый период, структура поставок по типу, по странам, по производителям (в том числе в разрезе типов). Все параметры приводятся в денежном и натуральном выражениях.

В четвертой части представлен конкурентный анализ.

В двенадцатом разделе приведены профили лидеров рынка (10 ведущих иностранных и российских компаний).

В тринадцатом разделе представлен ассортиментный анализ производителей расходомеров.

В пятой части приведен анализ потребления расходомеров.

В четырнадцатом разделе описана структура потребления расходомеров по отраслям, описаны основные механизмы закупок продукции.

В пятнадцатом разделе подробно описаны области применения расходомеров в нефтегазовой отрасли: учет добычи ископаемых, системы поддержания пластового давления, насосные перекачивающие станции.

Шестая часть посвящена описанию тенденций перспектив рынка.

В шестнадцатом разделе представлен анализ политических, экономических и технологических факторов развития рынка.

В семнадцатом разделе предложен количественный и качественный прогноз рынка расходомеров до 2015 года.

В заключении отчета сформулированы выводы.

К отчету прилагается база данных российских и иностранных производителей расходомеров.

Содержание маркетингового исследования рынка расходомеров
Введение
ЧАСТЬ 1. ОБЩИЕ СВЕДЕНИЯ. МИРОВОЙ РЫНОК РАСХОДОМЕРОВ
1. Определения. Основные характеристики расходомеров
2. Типы расходомеров
2.1. Массовый (кориолисовый) расходомер
2.2. Электромагнитные расходомеры
2.3. Вихревые расходомеры
2.4. Ультразвуковые расходомеры
2.5. Другие виды расходомеров
2.6. Сводная таблица областей применения
3. Области применения расходомеров
4. Мировой рынок расходомеров
ЧАСТЬ 2. РОССИЙСКИЙ РЫНОК РАСХОДОМЕРОВ
5. Общие характеристики российского рынка расходомеров. Баланс рынка расходомеров
6. Лидеры рынка российского рынка расходомеров
7. Структура рынка расходомеров по типам
8. Внутреннее производство расходомеров
8.1. Методология анализа внутреннего производства расходомеров
8.2. Количественные характеристики внутреннего производства расходомеров
ЧАСТЬ 3. ВНЕШНЯЯ ТОРГОВЛЯ РАСХОДОМЕРАМИ
9. Методология анализа внешней торговли расходомерами
10. Импорт расходомеров
10.1. Динамика импорта расходомеров в 2008-2010 гг.
10.2. Структура импорта расходомеров по типу в 2008-2010 гг.
10.3. Структура импорта расходомеров по странам в 2008-2010 гг.
10.4. Структура импорта расходомеров по производителю в 2008-2010 гг.
10.5. Структура импорта расходомеров по типу в разрезе производителей в 2009 году
10.5.1. Вихревые расходомеры
10.5.2. Массовые расходомеры
10.5.3. Ультразвуковые расходомеры
10.5.4. Электромагнитные расходомеры
10.5.5. Прочие расходомеры
11. Экспорт расходомеров
11.1. Динамика экспорта расходомеров по годам в 2008-2010 гг.
11.2. Структура экспорта расходомеров по типу в 2009 году
11.3. Структура экспорта расходомеров по странам в 2008-2010 гг.
11.4. Структура экспорта расходомеров по производителю в 2008-2010 гг.
ЧАСТЬ 4. КОНКУРЕНТНЫЙ АНАЛИЗ РЫНКА РАСХОДОМЕРОВ
12. Профили лидеров рынка расходометрии
13. Ассортиментный анализ расходомеров
ЧАСТЬ 5. АНАЛИЗ ПОТРЕБЛЕНИЯ РАСХОДОМЕРОВ
14. Структура потребления расходомеров по отраслям
15. Особенности потребления в нефтегазовой отрасли
15.1. Производители оборудования
15.2. Замерные установки для учета добычи нефти
15.3. Станции поддержания пластового давления
15.4. Насосные перекачивающие станции
ЧАСТЬ 6. ТЕНДЕНЦИИ И ПЕРСПЕКТИВЫ РЫНКА РАСХОДОМЕРОВ
16. Внешние факторы рынка расходомеров
16.1. Политические и законодательные факторы
16.2. Экономические факторы
16.3. Технологические факторы
17. Прогноз развития рынка расходомеров до 2015 года
Выводы

База данных, входящая в состав маркетингового исследования, содержит подробные сведения о 38 производителях расходомеров . Каждая компания в базе данных описана следующим набором реквизитов:
- Название компании
- Регион/страна
- Контакты
- URL
- Год основания
- О компании
- Количественные показатели деятельности
- Виды выпускаемых расходомеров
- Вихревые расходомеры
- Массовые расходомеры
- Ультразвуковые расходомеры
- Электромагнитные расходомеры
- Другие расходомеры
- Другая продукция
- Система сбыта
- Сервис
- Маркетинговая активность
- Дополнительно

Для удобства пользования, в базе данных предусмотрена возможность выбрать производителей вихревых, массовых, ультразвуковых, электромагнитных и других расходомеров, а также компании из необходимого региона.

Внимание! Для заказа маркетингового исследования с этой страницы пришлите реквизиты Вашей компании для выставления счета на .

Классификация задач измерения расхода

По функциональному назначению задачи измерения расхода в промышленности условно можно разделить на две основные части:
задачи учета:

– коммерческого;

– оперативного (технологического);

Задачи контроля и управления технологическими процессами:

– поддержание заданного расхода;
– смешивание двух и более сред в определенной пропорции;
– процессы дозирования/наполнения.

Задачи учета предъявляют высокие требования к погрешности измерений расхода и стабильности работы расходомера, т. к. его показания являются основанием для расчетных операций между поставщиком и потребителем. К задачам оперативного учета относятся такие применения, как межцеховой, внутрицеховой учет и т. д. В зависимости от требований, предъявляемых к данным задачам, возможно использование расходомеров более простой конструкции с большей погрешностью измерений, чем при коммерческом учете.

Задачи контроля и управления технологическими процессами весьма разнообразны, поэтому выбор типа расходомера зависит от степени важности и требований, предъявляемых к данному процессу.

По условиям измерения задачи определения расхода можно классифицировать следующим образом:
измерение расхода в полностью заполненных (напорных) трубопроводах;
измерение расхода в не полностью заполненных (безнапорных) трубопроводах, открытых каналах и лотках.

Задачи измерения расхода в полностью заполненных трубопроводах являются стандартными, и большинство расходомеров предназначены именно для данного применения.
Задачи второй группы являются специфичными, т. к. требуют, в первую очередь, определения уровня жидкости. Причем, в зависимости от типа лотка или канала, определение расхода возможно через измеренный уровень на основе теоретически доказанных и экспериментально подтвержденных зависимостей расхода жидкости от уровня. Однако, существуют применения, где наряду с измерением уровня жидкости в канале, лотке или не полностью заполненном трубопроводе необходимо определение и скорости потока.


Измерение расхода жидкостей

Для измерения расхода жидкостей в промышленных условиях целесообразно применять электромагнитные, ультразвуковые, массовые кориолисовые расходомеры и ротаметры.
Кроме того, в ряде случаев оптимальным решением может быть применение вихревых расходомеров и расходомеров переменного перепада давления.

При выборе приборов для измерения расхода электропроводящих жидкостей и пульп в первую очередь рекомендуется рассмотреть возможность применения электромагнитных расходомеров.

В силу своих конструктивных особенностей, разнообразия материалов футеровки и электродов данные приборы имеют широкую область применения и используются при измерении расхода следующих сред:
общетехнические среды (вода и др.);
высококоррозионно активные среды (кислоты, щелочи и др.);
абразивные и адгезионные (налипающие) среды;
гидросмеси, пасты и суспензии с содержанием волокон или твердой фазы более 10% (масс.).

Высокая точность измерения (± 0,2…0,5% измеряемой величины), малое время отклика (до 0,1 с в зависимости от модели), отсутствие движущихся частей, высокая надежность и длительный срок службы, минимальное обслуживание – все это делает полнопроточные электромагнитные расходомеры оптимальным решением задач измерения расхода и учета количества электропроводящих сред в трубопроводах малого и среднего диаметра.

Погружные электромагнитные расходомеры широко применяются в задачах оперативного контроля и технологических процессах, где не требуется высокая точность измерений, а также при измерении расхода в трубопроводах больших диаметров (> DN400) и скорости потока в открытых каналах и лотках.

Ультразвуковые расходомеры в основном применяются для измерения расхода неэлектропроводящих сред (нефть и продукты ее переработки, спирты, растворители и др.). Полнопроточные расходомеры применяются как в узлах коммерческого учета, так и для управления технологическими процессами. Погрешность измерения данных приборов, в зависимости от исполнения, составляет порядка ± 0,5% измеряемой величины. В зависимости от принципа измерения среда должна быть чистой (времяим­пульсные расходомеры) или с содержанием нерастворенных частиц и/или нерастворенного воздуха (доплеровские расходомеры). В качестве примера сред для второго случая можно указать гидросмеси, суспензии, буровые растворы и др.

Расходомеры с накладными датчиками просты в монтаже и, как правило, применяются для оперативного учета и в неответственных технологических процессах (погрешность порядка ±1…3% шкалы) или в применениях, где нет возможности установки полнопроточных расходомеров.
Массовые кориолисовые расходомеры, в силу своего принципа измерения, могут измерять расход практически любых сред. Данные приборы отличаются высокой точностью измерений (± 0,1…0,5% измеряемой величины при измерении массового расхода) и высокой стоимостью. Поэтому кориолисовые расходомеры в первую очередь рекомендуется применять в узлах коммерческого учета, процессах дозирования/наполнения или ответственных технологических процессах, где необходимо изме­рять массовый расход среды или контролировать сразу несколько параметров (массовый расход, плотность и температуру).

Кроме того, массовые расходомеры можно применять в качестве плотномеров при их установке, например, в байпасной линии. Во всех остальных случаях, при более простых применениях, массовые расходомеры могут оказаться неконкурентоспособными по сравнению с объемными расходомерами, которые можно применять для решения этих же задач.
В качестве материалов измерительных трубок в массовых расходомерах используются, как правило, нержавеющая сталь, сплав Hastelloy, поэтому данные приборы не годятся для измерения высококоррозионно-активных сред. Способность измерять массовый расход напрямую позволяет применять массовые расходомеры при измерении расхода двухфазных сред с возможностью определения концентрации одной среды в другой. Существуют и ограничения. В качестве материалов измерительных трубок в массовых расходомерах используются, как правило, нержавеющая сталь и сплав Hastelloy, поэтому данные приборы не подходят для измерения расхода высококоррозионно-активных сред. Также на точность измерения расхода массовыми расходомерами сильно влияет наличие нерастворенного газа в измеряемой среде.
Ротаметры, как правило, применяются для измерения малых расходов. Класс точности данных приборов, в зависимости от исполнения, варьируется в пределах 1,6…2,5, поэтому использование данных приборов рекомендуется в задачах оперативного учета и контроля технологических процессов.
В качестве материалов измерительной трубки используются нержавеющая сталь и фторопласт PTFE, что позволяет применять ротаметры для измерения расхода коррозионно-активных сред. Металлические ротаметры также позволяют измерять расход высокотемпературных сред.Необходимо отметить, что измерение расхода адгезионных, абразивных сред и сред с механическими примесями с помощью ротаметров невозможно. Кроме того, существует ограничение по монтажу данного типа расходомеров: их установка допускается только на вертикальных трубопроводах с направлением потока измеряемой среды снизу вверх. Современные ротаметры, кроме индикаторов, могут оснащаться микропроцессорным электронным модулем с выходным сигналом 4…20 мА, счетчиком суммарного количества и конечными переключателями для работы в режиме реле потока.

Несмотря на то, что вихревые расходомеры раз­рабатывались специально для измерения расхода газа/пара, их возможно применять также для измерения расхода жидких сред. Однако, в силу их конструктивных характеристик, наиболее рекомендуемыми применениями данных приборов в задачах оперативного учета и контроля технологических процессов, являются:
измерение расхода высокотемпературных жидкостей с температурой до +450 °С;
измерение расхода криогенных жидкостей с температурой до -200 °С;
при высоком, до 25 МПа, технологическом давлении в трубопроводе;
измерение расхода в трубопроводах большого диаметра (погружные вихревые расходомеры).
Жидкость при этом должна быть чистой, однофазной, с вязкостью не более 7 сП.

Измерение расхода газа и пара

В отличие от жидкостей, которые условно можно считать практически несжимаемыми средами, объем газовых сред существенно зависит от температуры и давления. Поэтому при учете количества газов оперируют объемом и расходом, приведенными либо к нормальным условиям (T = 0 °C, P = 101,325 кПа абс.), либо к стандартным условиям (Т = +20 °С, Р = 101,325 кПа абс.).

Таким образом, для измерения количества газа и пара наряду с объемным расходомером необходимы датчики давления и температуры, либо плотномер, либо массовый расходомер, а также вычислительное устройство (корректор или другой вторичный прибор с соответствующими матема­тическими функциями). При регулировании расхода газов в технологических процессах зачастую ограничиваются измерением одного лишь объемного расхода, но для точного регулирования также необходимо определять расход при нор­мальных условиях, особенно в случае значительных колебаний плотности газа.

Наиболее часто для измерения расхода газа и пара применяется метод переменного перепада давления (ППД), причем в качестве первичных преобразователей расхода традиционно используются сужающие устройства, в первую очередь – стандартная диафрагма. Основными преимуществами расходомеров ППД является беспроливная поверка, невысокая стоимость, широкий диапазон применений и большой опыт эксплуатации. Тем не менее, данный метод обладает и весьма серьезными недостатками: квадратичной зависимостью перепада давления от расхода, большими потерями давления на сужающих устройствах и жесткими требованиями к прямым участкам трубопровода. В результате в настоящее время как в России, так и во всем мире имеется четкая тенденция по замене расходомерных комплексов с сужающими устройствами на расходомеры с другими принципами измерения. Для трубопроводов малых и средних диаметров сейчас существует широкий выбор различных методов и средств измерения расхода, но для трубопроводов диаметром 300…400 мм и выше альтернатива методу ППД практически отсутствует. Избавиться от недостатков традиционных расходомеров ППД с сужающими устройствами, сохранив при этом преимущества самого метода, позволяет использование в качестве первичных преобразователей расхода осредняющих напорных трубок серии Torbar, а в качестве средств измерения перепада давления (дифманометров) – цифровых датчиков разности давления серии EJA/EJX. При этом потери давления уменьшаются в десятки и сотни раз, прямые участки сокращаются в среднем в 1,5…2 раза, динамический диапазон по расходу может достигать 1:10.

В последнее время более широкое применение для измерения расхода газа и пара находят вихревые расходомеры. По сравнению с расходомерами переменного перепада давления они обладают более широким динамическим диапазоном, меньшими потерями давления и прямыми участками. Наиболее эффективны данные приборы в задачах учета, прежде всего коммерческого, и в ответственных задачах регулирования расхода. Использование расходомера со встроенным датчиком температуры либо стандартного расходомера совместно с датчиками температуры и давления позволяет определить массовый расход среды, что особенно актуально при измерении расхода пара.

Однако данные приборы в силу особенностей своего принципа измерения не применяются для:
измерения расхода многофазных, адгезионных сред и сред с твердыми включениями;
измерения расхода сред с малыми скоростями потока.

При малых и средних скоростях потока для измерения расхода технических газов широко применяются ротаметры. Данные приборы рассчитаны на работу как с высокотемпературными, так и с коррозионно-активными средами и широко используются в различных исполнениях. Однако как указывалось выше, ротаметры монтируются только на вертикальных трубопроводах с направле­нием потока снизу вверх и не применяются при измерении расхода адгезионных сред и сред с содержанием твердых включений, в том числе абразивных.

При необходимости непосредственного измерения массового расхода газа также применяются массовые кориолисовые расходомеры. Однако при применении данных приборов измерение плотности и, соответственно, расчет объемного расхода невозможны, т. к. плотность газов ниже минимального значения диапазона измерений плотности данных расходомеров. С учетом вы­сокой стоимости данных приборов их применение рекомендуется в наиболее ответственных процессах, где критичным параметром является массовый расход среды.

Сводная таблица применения различных типов расходомеров

Тип расхода
Пар
Газы
Жидкости




Давление
измеряемой
среды



Вязкость


С меха-
ническим






Расходомеры переменного перепада
давления
O
O

O
O
X
X
O
O
O
O
Электромагнитные расходомеры
X
X X O
O
O
O
O
O
O
O
O
X X O
Вихревые расходомеры
O
O
O
X
O
X
X
X
X
X
O
O
O
O
Ультрозвуковые
расходомеры
время-пролетные
X
O
O
O
X
X
X
O
O
O
O
доплеровские
X
X
X
X
O
O
O
O
O
O
O
O
O
Ротаметры
O
O
X
O
X
O
O
O
X
X
X
O
O
O
O
Массовые кориолисовые
расходомеры
O
O
O
O
O
O
X
O
O
O
O
O
O
O
Механические счетчики
X
O
X
O
O
X
X
X
X
O
O

Современные вихревые расходомеры превосходят по характеристикам и возможностям своих предшественников, которые использовали большие тела обтекания, блокирующие 43% площади поперечного сечения трубы. В конструкции современных ультразвуковых расходомеров используются тела обтекания малого диаметра для получения большей амплитуды перемещения. В результате этого, значительно улучшены характеристики потери давления в системе и динамический диапазон прибора.

Назначение и области применения

Вихревые расходомеры-счетчики предназначены для измерения объемного и массового расхода жидкостей, газов и пара. Расходомеры состоят из блока электроники и первичного преобразователя. Блок выполнен в виде цилиндрического корпуса с отсеками для смотрового окна и разъемов. На корпусе расположены кабельные вводы и переходник для преобразователя. Применяются расходомеры для измерения и учёта расхода веществ технологических процессов в промышленности и коммунальном хозяйстве.

  • Идеально подходит для сред с высокой температурой и высокой скоростью пара
  • Производство энергии — паровые установки
  • Промышленное применение — установки ОВКВ, региональное управление энергопотреблением
  • Коммерческое применение — управление энергопотреблением зданий, студенческих городков и сооружений
  • Нефтегазовая промышленность — распределение природного газа
  • Нефтехимическая промышленность — массовая балансировка, подогрев технологических реакций

Правильный выбор датчиков напрямую влияет на финальный результат производственного круговорота, поэтому электронные расходомеры являются одним из важнейших звеньев цепи технического процесса. - это одни из самых востребованных на отечественном рынке приборов для учёта расхода веществ. Свою популярность они заслужили благодаря надёжности, простоте в эксплуатации, высокой точности измерений и, что немаловажно, своей доступности. История вихревых расходомеров начинается в 60х годах двадцатого века, но современные датчики сделали огромный шаг вперёд по сравнению со своими предками.

Что же такое вихревой расходомер и какой принцип действия

Простой пример эффекта образования вихрей - это флаг, волнующийся на ветру из-за завихрений, которые создаются движением воздуха, обтекающего флагшток. Поток измеряемого вещества проходя по внутреннему сечению арматуры расходомера, встречает на своём пути препятствие - тело обтекания, установленное в расходомере, проходя через него, увеличивает скорость, уменьшая давление. Таким образом, после преодоления препятствия создаются завихрения, называемые вихревой дорожкой Кармана. Ультразвуковой луч, генерируемый прибором, проходит через поток вихрей ниже по течению от тела обтекания. При прохождении вихрей несущая ультразвукового сигнала изменяется.

Это изменение несущей доступно для измерения и смещается пропорционально количеству образовавшихся вихрей. Цифровая обработка сигналов позволяет определить число вихрей. Эта величина преобразуется в скорость потока. Программа преобразует скорость в объемный расход в единицах измерения, выбранных оператором. В вихревых расходомерах компании используется самые маленькие тела обтекания среди расходомеров такого типа, которые обеспечивают высокую чувствительность, исключительную работоспособность при очень низких расходах. Большой динамический диапазон и низкие потери давления. При использовании встроенного термометра сопротивления и внешнего датчика давления программное обеспечение расходомера позволит скомпенсировать изменения давления и температуры для точного измерения массового расхода (расходомеры газов).

Для усиления выходного сигнала в некоторых расходомерах устанавливают несколько обтекаемых тел. Сами же тела могут иметь различные формы, например, треугольную или круглую. Одним из важнейших достоинств такого типа расходомеров является отсутствие каких-либо движущихся частей, что несомненно оказывает положительное влияние на срок службы прибора. Это одни из самых долговечных и неприхотливых приборов.

Подтипы вихревых расходомеров

Все вихревые расходомеры можно разделить на три группы по типу преобразователей.

  1. Вихревые расходомеры с обтекаемым телом - поток вещества огибает тело обтекания, установленное в трубопроводе, меняется траектория движения и увеличивается скорость струй, создаются завихрения, уменьшается давление в трубе. За миделевым сечением тела скорость снижается, а давление увеличивается. На передней стороне тела обтекания образуется повышенное давление, на задней стороне — пониженное. Образование вихрей с обеих сторон происходит поочередно. За обтекаемым телом образуется вихревая дорожка Кармана.

  2. Вихревые расходомеры с прецессией воронкообразного вихря - принцип действия заключается в том, что поток закручивается перед попаданием в более широкую часть трубы, вызывая пульсации давления. В качестве преобразователя сигнала обычно служат пьезоэлементы.

  3. Вихревые расходомеры с осциллирующей струей - в подобного рода расходомерах пульсации давления создаются специальной конструкцией самого датчика, благодаря которой струя измеряемого вещества вытекает из специально предусмотренного отверстия в корпусе расходомера и создаёт пульсации давления.

Плюсы и минусы вихревых расходомеров

Подводя итог стоит отметить плюсы и минусы вихревых расходомеров, тезисно обобщим всё о расходомеров этого типа. Вихревые расходомеры применяются для измерения объёмного и массового расхода любых жидких и газообразных сред. Приборы хорошо справляются со своими обязанностями при температурах среды до 500 градусов Цельсия и давлении до 30Мпа. Это универсальные по всем своим параметрам расходомеры, подходящие практически для любого промышленного предприятия, где нужен точный учёт расхода жидких и газообразных веществ от воды до углеводородов.

Плюсы

К положительным моментам стоит отнести: высокую стабильность показаний, точность измерений, простоту в эксплуатации, нечувствительность к загрязнениям, отсутствие подвижных частей, охватывает практически весь спектр веществ - сред измерения.

Минусы

Ну и недостатками данный прибор не обделён: обладает большой чувствительностью к вибрациям, так же при измерениях требуется значительная скорость потока, ограничение по диаметру труб не более 300мм и менее 150мм и отмечаются просадки по давлению.