Как сделать зеркальный телескоп. Концентраторы солнечной энергии. Самодельный солнечный концентратор из зеркальный пленки

В моем далеком уже детстве попалась мне хрестоматия по астрономии с тех ещё более далёких лет, которых я не застал, когда эта астрономия была предметом в школе. Читал её до дыр и мечтал о телескопе, чтобы хоть одним глазком посмотреть в ночное небо, но не сложилось. Рос в деревне, где ни знаний, ни наставника для этого не было. Так и ушло это увлечение. Но с возрастом обнаружил, что желание то осталось. Прошерстил интернет, оказывается людей, увлеченных телескопостроением и собирающих телескопы, да ещё какие, и с нуля - масса. Из профильных форумов набрался информации, теории, и решил построить небольшой телескоп для начинающего.

Спроси меня ранее, что такое телескоп, сказал бы - труба, с одной стороны смотришь, вторую направляешь на предмет наблюдения, одним словом подзорная труба, но побольше размером. Но оказывается для телескопостроения используют в основном другую конструкцию, которую ещё называют ньютоновским телескопом. При массе достоинств она имеет не так много недостатков, по сравнению с другими конструкциями телескопов. Принцип его работы понятен из рисунка - свет далёких планет падает на зеркало, имеющее в идеале параболическую форму, далее свет фокусируется и выносится за пределы трубы с помощью второго, установленного под 45 градусами по отношению к оси, по диагонали, зеркала, которое так и называют - диагональное. Далее свет попадает в окуляр и в глаз наблюдающего.


Телескоп это точный оптический прибор, поэтому при изготовлении необходимо соблюдать аккуратность. Перед этим необходимо произвести расчёты конструкции и мест установки элементов. В интернете существуют онлайн калькуляторы расчёта телескопов и грех этим не воспользоваться, но азы оптики знать тоже не помешает. Мне понравился калькулятор.

Для изготовления телескопа в принципе ничего сверхестественного не надо, я думаю что у любого хозяйственного человека в подсобке есть небольшой токарный станочек хотя бы по дереву, а то и по металлу. А если есть ещё и фрезеровочный станок - завидую белой завистью. И уж совсем не редкость теперь домашние лазерные станочки с ЧПУ для вырезания по фанере и 3D печатающий станок. К сожалению, у меня в хозяйстве из всего выше перечисленного ничего нет, окромя молотка, дрели, ножовки, электролобзика, тисков и мелкого ручного инструмента, плюс куча банок, ванночек с россыпью трубок, болтиков, гаечек, шайбочек и прочего гаражного металлолома, который вроде и выкинуть надо, но жалко.

При выборе размера зеркала (диаметр 114мм) мне кажется выбрал золотую середину, с одной стороны такой размер ходовой и уже не совсем маленький, с другой стороны стоимость не такая огромная, чтобы в случае фатальной неудачи пострадать финансово. Тем более главная задача была пощупать, разобраться и научиться на ошибках. Хотя, как говорят на всех форумах, самый хороший телескоп это тот, в которой наблюдают.

И так, для своего первого, надеюсь не последнего, телескопа я выбрал сферическое главное зеркало с диаметром 114мм и алюминиевым покрытием, фокусом 900мм и диагональным зеркалом, имеющего форму овала с малой диагональю в один дюйм. При таких размерах зеркала и фокусного расстояния различия форм сферы и параболы ничтожны, поэтому можно использовать недорогое сферическое зеркало.

Внутренний диаметр трубы по книге Навашина, Телескоп астронома-любителя (1979), для такого зеркала должен быть не менее 130мм. Конечно, лучше побольше. Трубу можно делать и самому из бумаги и эпоксидки, или из жести, но грех не воспользоваться готовым дешёвым материалом - в этот раз метровая канализационная PVH труба DN160, купленная за 4.46 евро в строймагазине. Толщина стенок 4мм мне показалась достаточной, с точки зрения прочности. Пилится и обрабатывается легко. Хотя есть и с 6мм толщины стенкой, но мне показалась тяжеловатой. Для того, чтобы распилить, пришлось на неё брутально сесть, никаких остаточных деформаций на глаз не наблюдается. Конечно, эстеты скажут фи, как можно в трубу для овна звёзды смотреть. Но для настоящих рукопоповцев это не преграда.

Вот она, красавица


Зная параметры зеркала, можно делать расчёт телескопа на вышеупомянутом калькуляторе. Сразу не всё понятно, но по мере создания всё становится на свои места, главное, как всегда, не зацикливаться на теории, а совмещать её с практикой.

С чего начать? Я начал, по моему мнению, с самого сложного - узла крепления диагонального зеркала. Как уже писал, изготовление телескопа требует точности, но которая не отменяет наличие возможности регулировки положения того же диагонального зеркала. Без тонкой регулировки - никак. Схем крепления диагонального зеркала несколько, на одной стойке, на трёх растяжках, на четырёх и прочие. У каждого есть свои плюсы и минусы. Так как размеры, вес моего диагонального зеркала, а значит и его крепления, скажем прямо, малы, я выбрал трёхлучевую систему крепления. В качестве растяжек использовал найденный регулировочный лист нержавейки толщиной 0.2мм. В качестве арматуры использовал медные муфты под 22мм трубу с наружным диаметром 24мм, чуть меньшим размера моей диагоналки, а также болт М5 и болты М3. Центральный болт М5 имеет конусную головку, которая просунутая в шайбу М8 работает как шаровая опора, и позволяет наклонять регулировочными болтами М3 диагональное зеркало при регулировке. Сначала припаял шайбу, потом обрезал грубо под углом и подогнал под 45 градусов на листе грубой наждачки. На обе детали (одна залита полностью, вторая 5мм через отверстие) ушло меньше 14мл пятиминутного двухкомпонентного эпоксидного клея Момент. Так как размеры узла малы, очень трудно всё разместить и чтобы всё это нормально работало, плечо регулировки маловато. Но получилось очень и очень не плохо, диагональное зеркало регулируется достаточно плавно. Болты с гайками макал в горячий воск, чтобы не прилипла смола при заливке. Только после изготовки этого узла этого заказал зеркала. Само диагональное зеркало клеил на двухсторонний вспененный скотч.


Под спойлером некоторые фото этого процесса.

Узел диагонального зеркала















Манипуляции с трубой были следующие: отпилил лишнее, ну и так как труба имеет раструб большего диаметра, использовал его для усиления района крепления растяжек диагоналки. Вырезал кольцо и на эпоксидку посадил на трубу. Хотя жесткость трубы и достаточна, на мой взгляд лишним не будет. Далее по мере поступления комплектующих сверлил и вырезал в ней отверстия, снаружи обклеил декоративной плёнкой. Очень важный момент - окраска трубы изнутри. Она должна быть такая, чтобы как можно больше поглощала свет. К сожалению продающиеся краски, даже матовые, совсем не подходят. Есть спец. краски для этого, но они дорогие. Я сделал так - по совету из одного форума покрыл изнутри краской из баллончика, потом засыпал в трубу ржаной муки, закрыл два конца плёнкой, хорошо покрутил - потряс, вытряхнул то, что не прилипло и опять задул краской. Получилось очень прилично, смотришь как в печную трубу.


Крепление главного зеркала делал из двух дисков фанеры толщиной 12мм. Один с диаметром под трубу 152мм, второй с диаметром главного зеркала 114мм. Зеркало ложится на три кружка приклеенных к диску кожи. Главное, чтобы зеркало не было жёстко зажато, я прикрутил уголки, обматал их изолентой. Само зеркало удерживается штрапсами. Два диска имеют возможность двигаться друг относительно друга для регулировки основного зеркала с помощью трёх регулировочных болта М6 с пружинами и тремя стопорными болтами, тоже М6. По правилам в дисках должны быть отверстия, для охлаждения зеркала. Но так как у меня телескоп дома храниться не будет (будет в гараже), то и температурное выравнивание не актуально. Второй диск в таком случае заодно играет роль пылезащитной задней крышки.

На фото крепление уже с зеркалом, но без заднего диска.


Фото самого процесса изготовления.

Крепление основного зеркала



В качестве опоры использовал монтировку Добсона. В интернете масса различных модификаций, в зависимости от наличия инструмента и материалов. Состоит из трёх частей, первая в которой зажимается сама труба телескопа -


Оранжевые круги это отпиленные кругляки трубы, в которые вставлены круги из 18мм фанеры и залитые эпоксидной смолой. Получилась составная часть подшипника скольжения.


Вторая - куда ставится первая, позволяет двигаться трубе телескопа по вертикали. И третья - круг с осью и ножками, на который ставится вторая деталь, позволяющая вращать её.


В местах опирания деталей прикручены кусочки тефлона, позволяющие легко и без рывков перемещать детали одну относительно другой.

После сборки и примитивной настройки прошли первые испытания.


Сразу же появилась проблема. Я пренебрёг советами умных людей не сверлить отверстия под крепления основного зеркала без испытания. Хорошо ещё, что пилил трубу с запасом. Фокусное расстояние зеркала оказалось не 900мм, а около 930мм. Пришлось сверлить новые отверстия (старые заклеены изолентой) и отодвигать дальше основное зеркало. Просто не смог поймать в фокус ничего, приходилось поднимать сам окуляр из фокусёра. Минус этого решения - крепёжные и регулировочные болты с торца не прячутся в трубе. а торчат. В принципе не трагедия.

Снимал с руки мобильником. На тот момент был только один 6мм окуляр, степень увеличения это отношение фокусных расстояний зеркала и окуляра. В данном случае получается 930/6=155 раз.
Испытание номер 1. До объекта 1км.




Номер два. 3км.



Главный результат достигнут - телескоп работает. Понятно, что для наблюдения планет и Луны нужна более качественная юстировка. Для неё был заказан коллиматор, ну и ещё один 20мм окуляр, и фильтр для Луны в полнолуние. После этого все элементы с трубы были сняты и поставлены обратно уже тщательней, прочнее и точнее.

Ну и наконец цель всего этого - наблюдения. К сожалению звёздных ночей в ноябре практически не было. Из объектов, что успел понаблюдать всего два, Луна и Юпитер. Луна выглядит не диском, а величаво проплывающим ландшафтом. С 6мм окуляром вмещается только её часть. А Юпитер с его спутниками просто сказка, принимая во внимание расстояние, которое нас отделяет. Выглядит он как полосатый шарик со звёздочками-спутниками на линии. Цвета этих линий различить не получается, тут нужен телескоп с другим зеркалом. Но всё равно - завораживает. Для фотографирования объектов нужно как дополнительное оборудование, так и другой тип телескопа - светосильный с малым фокусным расстоянием. Поэтому здесь только фото с просторов интернета, точно иллюстрирующая то, что видно с таким телескопом.

К сожалению для наблюдения Сатурна придётся ждать весны, а пока в ближайшем будущем Марс, Венера.

Понятно, что зеркала далеко не все расходы на постройку. Вот далее список того, что было куплено кроме этого.

Эта статья предназначена для тех астрономов-любителей, которые уже наигрались с биноклем и телескопом-рефрактором, рассмотрели фазы Венеры, кольца Сатурна и спутники Юпитера, и хотят чего-то менее скучного и более потрясающего. Например, в 1000 крат с огромным объективом. Сделать такое на одних линзах невозможно: дают так называемую хроматическую аберрацию, которая проявляется в виде радужных ореолов вокруг объектов, тем более сильных, чем сильнее увеличение телескопа.

Поэтому встаёт задача собрать самодельный телескоп-рефлектор, то есть телескоп на зеркалах. В его простейшей форме он состоит из двух зеркал (объектива и диагонального) и одной линзы-окуляра.

Где достать

Главное зеркало-объектив телескопа-рефлектора — самая важная и ответственная его часть. И она же — самая сложная в изготовлении. Найти готовое зеркало такого типа практически невозможно.

Хотя есть один способ: можно сделать такое из вогнутой или выпукло-вогнутой линзы. Найдите вогнутую или выпукло-вогнутую линзу самого большого размера, какого только сможете найти. Важно, чтобы фокусное расстояние было как можно выше, а, значит, вогнутость как можно меньше: от слишком мощных вогнутых линз требуется не сферическая, а параболическая форма, а это уже совсем другой дефицит, который никак не сымпровизируешь.

Самый надёжный расчёт — это найти плосковогнутую диаметром в 10-12 см и оптической силой в 1 диоптрию. Поищите её в оптических магазинах. Самодельный телескоп в 1000 крат, таким образом, не получится, но кое-что сделать с таким можно.

Серебрение с помощью химии

Затем надо заняться серебрением, чтобы получить зеркало. Приготовьте раствор, который называется реактивом Толленса. Для того чтобы приготовить этот реактив, нужны: нитрат серебра (ляпис), едкий натр (каустическая сода) и раствор аммиака.

В комплект к этому реактиву ещё понадобится формалин (раствор формальдегида). На 10 мл воды растворите 1 г нитрата серебра, на другие 10 мл воды — 1 г едкого натра. Смешайте эти растворы, должен выпасть белый осадок. Приливайте раствор аммиака, пока осадок не растворится. Этот раствор и есть реактив Толленса.

Чтобы использовать его для серебрения, следует налить его в вогнутую часть, предварительно тщательно очищенную от любых загрязнений. Если очень слабовыраженная вогнутость, следует сделать по её краю барьерчик из воска или пластилина.

Налив реактив, следует начинать частыми каплями добавлять в него формалин. Вскоре образуется плёнка серебра, и она превратится в вогнутое зеркало. Имейте в виду, что реактив Толленса не хранится долго, использовать его надо сразу после того, как он приготовлен.

Есть и способы изготовить вогнутую поверхность самостоятельно, в первую очередь — вышлифовывание на стеклянных кругах вогнутой поверхности. Однако эти способы слишком сложны, и не рекомендованы к использованию начинающими.

Таким же способом, как и вогнутое, следует изготовить диагональное зеркало. Оно должно быть идеально прямым; для его изготовления подойдёт плоская сторона любой плосковыпуклой или плосковогнутой.

Сборка телескопа

Теперь можете начинать собирать самодельный . Вам понадобится труба, длиной точно в фокусное расстояние (если Вы использовали для изготовления плосковогнутую линзу в 1 диоптрию, то возьмите трубу длиной в 100 см, +0,5- 1 см поправки на толщину).

Труба должна быть открытой с одного конца и закрытой с другого, и изнутри выкрашенная самой чёрной краской, что только сможете найти. Диаметр трубы должен быть в 1,25 раза больше диаметра зеркала-рефрактора, если Вы использовали для изготовления линзу диаметром в 100 мм, возьмите трубу диаметром в 125 мм.

В донце трубы, точно по центру, закрепите зеркало-объектив. Чтобы это удобно было делать, донце лучше предусмотреть съёмное. Крепить объектив к донцу можно, к примеру, суперклеем.

Сделайте отверстие ближе к открытому концу трубы. Чтобы высчитать нужное положение для отверстия, отсчитайте от открытого конца трубы её радиус. Там и должен располагаться центр отверстия. В этом отверстии будет укреплён окуляр (перпендикулярно трубе).

Оно должно висеть на оптической оси под углом в 45 градусов. Если угол выдержан правильно, то при взгляде в окуляр Вы будете видеть изображение. Если с первого раза не получится, поэкспериментируйте с углом.

Всем привет! С Вами Виталий Соловей. Сегодня моя статья будет на тему параболических зеркал и вообще энергии солнца. Пару лет назад на просторах интернета США я наткнулся на уникальное по тем временам устройство — параболическое зеркало, которое так же ещё называют концентратором прямых солнечных лучей. Визуально оно напоминает спутниковую тарелку с зеркальной поверхностью внутри.

Принцип действия данной тарелки таков, что при попадании солнечных лучей на зеркальную поверхность, лучи отражаются и скапливаются в одной точке. Это происходит благодаря параболической форме тарелки и луч света отражается точно под таким же углом, под которым попал на зеркальную поверхность.

При правильном исполнении, так называемого, выпуклого зеркала, температура в месте скопления лучей может достигать 2 000 градусов по товарищу Цельсию.

В подтверждение этого приведу видеоролик

Поверхность параболического зеркала может быть либо цельная, то есть без швов, либо из кусочков зеркал или отражающей плёнки. На видео выше, зеркало состояло из 5800 отдельных маленьких зеркал. Но сложность состоит в том, чтобы правильно их все разместить. Разместить все 5800 мини зеркал под правильным углом.

Так же поверхность может быть покрыта кусочками отражающей серебряной плёнки, что тоже не есть гуд, так как из-за многочисленных швов, солнечные лучи слегка рассеиваются и эффект будет значительно слабее.

Вы ходом в данной ситуации может быть, если саму выпуклую тарелку изготовить из нескольких продольных частей, на которые ровно наклеена отражающая плёнка.

В таком случае отражённые лучи под наиболее правильным углом будут фокусироваться в точке скопления. Но самым эффективным способом изготовления всё таки является натуральное стеклянное зеркало параболической формы, которое, конечно стоить будет немерено для применения зеркала в быту.

Простейший и наиболее эффективный вариант, который я нашёл — это метод вакуумной формовки параболического зеркала.


Во время приклеивания, плёнку лучше расстелить зеркальной стороной к столешнице, а оклееной посудиной накрыть её и немного прижать.

  • Теперь чтобы сформировать параболическую форму для плёнки, потребуется откачать воздух из получившегося сосуда. Для этого просверлим отверстие в любой части пластиковой посудины и вставим туда велосипедный золотник.

Важно! Золотник требуется установить обратной стороной наизнанку, так как мы будем выкачивать воздух, а не накачивать его внутрь посудины.


И вот, что должно получиться в идеале:

На этом пока всё, в последующих статьях ещё расскажу о других, не менее важных применениях параболического зеркала. А напоследок видео о том, как развести огонь с помощью туалетной бумаги и столовой ложки:

Пустыня Атакама в Чили - райское место для астрономов. Уникальная чистота воздуха, благоприятные атмосферные условия в течение года и крайне низкий уровень светового загрязнения делают этот негостеприимный район идеальным местом для строительства гигантских телескопов. Например, телескоп E-ELT , под который уже готовят строительную площадку . Однако это не единственный масштабный проект подобного рода. С 2005 года ведутся работы по созданию ещё одного впечатляющего астрономического инструмента, Гигантского Магелланова Телескопа (GMT). Так он будет выглядеть после окончания строительства в 2020 году:

В основе его оптической системы лежит отражающая поверхность из 7 огромных круглых зеркал. Каждое диаметром 8,4 м и весом 20 т. Само по себе изготовление таких зеркала, да ещё и с требуемой точностью, представляет настоящий инженерный шедевр. Как же создаются подобные изделия? Об этом - под катом.

На текущий момент изготовлено два зеркала, третье отлито и постепенно охлаждается, четвёртое запланировано к отливке на конец этого года. Производственный процесс разработан специалистами Лабораторией зеркал обсерватории Стюарда Университета Аризоны (University of Arizona"s Steward Observatory Mirror Lab).

Каждое зеркало составляется из большого количества шестиугольных сегментов, что позволило в 5 раз снизить массу изделия по сравнению цельнолитым зеркалом такого же размера. Заготовки из высококачественного боросиликатного стекла изготавливаются в Японии. Толщина сегментов не превышает 28 мм, что положительно влияет на условия эксплуатации - такое зеркало будет быстро принимать температуру окружающей среды, что предотвратит возникновение колебаний воздуха у поверхности и искажение изображения.


Подложки для сегментов зеркала.

Также облегчённость конструкции самих зеркал позволит собрать отражающую поверхность диаметром 25 метров всего лишь из 7 основных и 7 вторичных зеркал. Это в разы облегчает управление и настройку телескопа. Сравните это с 798 сегментами в проекте E-ELT.

После укладки стеклянных заготовок на подложки (1681 шт), сверху вся площадь будущего зеркала накрывается огромной вращающейся печью. Температура достигает 1178 градусов Цельсия, скорость вращения печи - 5 оборотов в минуту. В результате сегменты сплавляются и образуют единый стеклянный массив с параболической формой поверхности. Вращение печи за счёт центробежной силы как раз и позволяет грубо сформировать параболическую поверхность.

После этого начинается долгий процесс контролируемого равномерного охлаждения, в той же самой вращающейся печи. Он занимает три месяца, чтобы предотвратить появление трещин из-за слишком быстрого охлаждения. По окончании охлаждения, будущее зеркало аккуратно снимается с термостойкой подложки и переносится на полировочный стенд.

Далее начинается ещё более длительный и кропотливый процесс полировки зеркала. В отличие от зеркал сферических, кривизна поверхности которых постоянна, полировка гигантского параболического зеркала высочайшей точности представляет собой очень непростую задачу. В случае с зеркалами для ГМТ отклонение от сферической формы составило 14 мм.

Вообще, параболические линии и поверхности являются, так сказать, неестественными. Почти весь доступный и создаваемый инструментарий так или иначе связан с окружностями и сферами, поэтому учёным и технологам пришлось поломать голову над полировкой зеркала.

Один из основных инструментов представляет собой вращающийся диск диаметром около 1 м, с дозаторами полировальных веществ. Диск может перемещаться вдоль направляющей рельсы, в то время как само зеркало вращается вокруг оси на полировальном стенде.

Это алмазный шлифовальный инструмент для основной обработки поверхности, предназначенный для выравнивания большинства дефектов поверхности стекла и придания седловидной формы. Дело в том, что в ходе вращения жидкое стекло приняло форму симметричной параболы, что является наиболее близким приближением. И для получения седловидной параболической поверхности осуществляется управляемое компьютером шлифование, в ходе которого снимается 6-8 мм стекла. Точность обработки поверхности на данном этапе достигает 100 микрон.

Далее начинается полирование. После каждого цикла полировки с помощью интерферометра проводится измерение поверхности зеркала. Лазерным лучом сканируется вся площадь зеркала, а различные отклонения отражённого луча на выпуклостях и впадинах фиксируются и составляется карта дефектов. Разрешение интерферометра составляет около 5 нанометров.

На основании составленной карты дефектов компьютер управляет инструментами в ходе последующего цикла полировки, тратя больше времени или применяя большее давление при обработке конкретных участков. Для точечного исправления обнаруживаемых одиночных дефектов также использовались полировальные круги диаметром от 10 до 35 см с достаточно гибкими подошвами, повторяющими кривизну поверхности зеркала.

Для задач, которые будет выполнять телескоп, допускается наличие дефектов поверхности не более 25 нанометров. И добиться этого очень непросто. Полировка первого зеркала в итоге заняла около года.

Звездное небо всегда тянуло исследователей, наверное каждый хоть раз в жизни мечтал открыть какую-нибудь звезду или созвездие и назвать его в честь близкого ему человека. Представляю вашему вниманию небольшое руководство, которое состоит из двух частей в которых приводятся подробное описание, как сделать с нуля своими руками деревянный телескоп. В этой части будет показано, как вы можете изготовить ключевой элемент телескопа: первичное зеркало .

Хорошее зеркало поможет вам рассмотреть различные детали Луны, планет солнечной системы и других объектов далёкого космоса в то время, как зеркало плохого качества даст вам только расплывчатые очертания предметов.

Зеркала телескопа требуют чрезвычайной точной поверхности. В большинстве случаев отменное качество зеркал достигается путём ручной полировки, а не машинной полировки. Это одна из причин, почему некоторые люди предпочитают изготавливать собственные зеркала, а не покупать дешёвые промышленные образцы. Вторая причина –вы приобретёте необходимые знания по производству высококачественных оптических приборов, а как известно знания за плечами не носить.

Шаг 1: Материалы

  • Стакан-заготовка изготовлена из материала с низким коэффициентом расширения (пирекс, боросиликатное стекло, Дюран 50, Церодур, и т.д.);
  • Карбид кремния различной зернистости (60, 80, 120, 220, 320 единиц);
  • Оксид алюминия (25, 15, 9 и 5 мкм);
  • Оксид церия;
  • Смола;
  • Точильный камень;
  • Водонепроницаемая штукатурка (зубной гипс);
  • Керамическая плитка;
  • Эпоксидный клей.

Шаг 2: Подготовка заготовки

Стеклянные заготовки часто приходят с метками на поверхности. «Круглый знак» в нижней части – оставлен печкой, а верхние отметки – появились в следствии разности температур при охлаждении стекла.

Начнём с обработки кромок стекла, чтобы ограничить риск сколов. Точильный камень является прекрасным инструментом для выполнения данной операции. Не забывайте о средствах индивидуальной защиты органов дыхания и помните о том, что стекло и камень следует смачивать водой (так как стеклянная пыль очень плохо влияет на легкие).

Нижняя часть зеркала должна быть, как можно более плоской (прежде чем начинать работать на нём). Для выравнивания поверхности воспользуемся грубым карборундом (карбид кремния # 60). Распределим порошок и воду на плоской поверхности и потрём стеклом по нём. Через несколько секунд, вы увидите серую пасту. Смойте её и добавьте влажный песок. Продолжайте, пока поверхность не будет очищена от ям и выбоин.

Шаг 3:

Эта приспособа будет использоваться для создания вогнутой поверхности на стеклянной заготовке.

Накроем стекло полиэтиленовой пленкой. Сделаем картонный цилиндр вокруг заготовки и зальём гипс внутрь. Дадим ему высохнуть, после чего снимем картон. Осторожно отделите стекло и обработайте заусенцы на краях.

Шаг 4: Покрытие из керамической плитки

Нам нужна твёрдая поверхность, для того чтобы отшлифовать стекло. Вот почему выпуклость заготовки нужно покрыть керамической плиткой.

Приклеим плитку на гипсовую основу эпоксидной смолой.

Обратите внимание, что следует избегать размещения плитки или отверстий в центре. Вместо этого, немного сместите плитку, чтобы избежать какого-либо центрального дефекта на зеркальной поверхности.

Шаг 5: Начинаем шлифовку

Положим немного влажного песка на поверхность плитки и начнём тереть стекло по ней.

После нескольких проходов, повернём зеркало и продолжим шлифовку в другом направлении. Это обеспечивает хорошую обработку, со всех ракурсов и предотвратит ошибки.

Шаг 6:

Продолжаем шлифовать, пока не получим желаемый изгиб. Чтобы оценить кривизну, необходимо использовать калькулятор из набора измерений Sagitta.

Если вы хотите построить телескоп для наблюдения за планетами, вам понадобится больше фокусное соотношение (F / 8 или выше).

С другой стороны, если вы хотите созерцать просторы галактики и звёздные туманности, вам понадобится небольшое фокусное соотношение (F / 4, например).

Фокусное соотношение F / 4,75. Sagitta моего 20 см зеркала 0,254 см.

Шаг 7: Сглаживаем поверхность

После того, как будет достигнута необходимая кривизна, нужно сгладить поверхность, при этом сохранив ту же кривизну.

Отметьте маркером крупные изъяны и продолжайте шлифовать до полного их удаления. Это будет визуальным подтверждением того, что вы можете переключиться на более мелкий абразив.

Перейдём на карбида кремния # 320. После того, как вы достигли этого шага, вы должны начать видеть некоторые отражения при всматривании в заготовку зеркала.

Шаг 8:

Нам нужно изготовить еще один инструмент для данной операции. Вы можете сделать такую приспособу из гипса или толстой фанеры. Она будет покрыта мягким материалом – смолой.

Смола хвойных деревьев – очень липкая и трудно отчищается.

Сделайте еще один цилиндр вокруг основания приспособы. Растопите большое количество смолы и залейте её в цилиндр. Дайте смоле остыть и снимите картонный кожух. После этого начнём формировать поверхность, необходимо придать ей небольшую выпуклость. Созданные каналы также помогут вам при обработке стекла.

Шаг 9: Полируем

Положите немного влажного порошка церия на смолу и начинайте тереть о нём зеркалом. Церий будет проникать в поверхность смолы. Используйте мыльную смазку, если нужно.

Шаг 10: Изготовляем Фуко тестер

Фуко тестер – инструмент предназначен для анализа поверхности параболических зеркал. Он имеет источник света, который светит на зеркало. Когда свет возвращается, то фокусируется в другом районе (если он пришел от края или центра зеркала).

Тестер использует этот принцип, чтобы вы визуально могли увидеть ошибки в диапазоне от 1 миллионной см. Добавив экран Ronchi к тестеру вы сэкономите время, потому что будете получать представление о поверхности без каких-либо измерений.

Для того, чтобы сделать жизнь проще, сделайте стенд для зеркала. Винт в задней части позволяет регулировать угол наклона.

Шаг 11: Изготавливаем параболоид

После стадии доводки у нас должно получиться полностью полированное зеркало с красивой сферической поверхностью. Тем не менее, сфера не подходит для астрономических целей. Мы должны получить параболоид.

Разница между сферой и параболоидом мала (порядка 1 микрона). Для достижения этой разницы будем использовать тестер Фуко. Так как мы знаем, как должно выглядеть отражение, мы будем делать специальную доводку оксидом церия, пока отражение на зеркале не совпадет с теоретическим.

Внешний вид шлифовки будет напоминать «W». Амплитуда должна быть 4/5 диаметра в поперечном и продольном направлении.

Существует также полный перечень различных приемов, чтобы исправить ошибки конкретной поверхности.

Шаг 12: Контроль поверхности с помощью тестера Фуко

Так выглядит отражение в Фуко тестере, что снабжён сеткой Рончи.

В зависимости от случая (сетка разрезает свет перед радиусом кривизны или после), можно интерпретировать линии и вывести форму поверхности.

Маска Couder используется для измерений с тестером Фуко.

Шаг 14: Алюминирование

Для того, чтобы полностью завершить поделку, её нужно отправить на алюминирование. В настоящее время зеркало отражает только 4% света. Алюминиевый вклад в поверхность увеличит процент более чем на 90%.

Необязательное дополнение – покрытие из SiO2 поможет защитить металл от любого источника окисления.

Можно добавить отпечаток центра – это помогает при коллимации и не влияет на качество зеркала, так как центр не участвует в формировании изображения, что вы будите видеть в окуляре.

Продолжение следует…